Regge behavior in effective field theory

Basem Kamal El-Menoufi

SCET 2015, Santa Fe, New Mexico

March 25, 2015

- In collaboration with J. Donoghue and G. Ovanesyan (arXiv:1405.1731).
- Related work done by S. Fleming (arXiv:1404.5672).

 -111

 $\epsilon = 1$

 209

Outline

¹ [Brief historical remarks on Regge physics](#page-2-0)

- [Regge original idea](#page-3-0)
- [Regge behavior in perturbation theory](#page-5-0)

² [What is the kinematics making up the Reggeon?](#page-8-0) **•** [Strong ordering](#page-9-0)

³ [Regge behavior using the method of regions \(MOR\)](#page-11-0)

- The box graph: SCET vs. $SCET_G$
- **[The 2-loop ladder via Cutkosky rule](#page-20-0)**
- \bullet The *n*[-fold overlap and the Regge mode](#page-23-0)

手下 メラト

[Regge original idea](#page-3-0) [Regge behavior in perturbation theory](#page-5-0)

Outline

¹ [Brief historical remarks on Regge physics](#page-2-0)

- [Regge original idea](#page-3-0)
- [Regge behavior in perturbation theory](#page-5-0)

[What is the kinematics making up the Reggeon?](#page-8-0) • [Strong ordering](#page-9-0)

[Regge behavior using the method of regions \(MOR\)](#page-11-0) • [The box graph: SCET vs. SCET](#page-12-0) $_G$ **• [The 2-loop ladder via Cutkosky rule](#page-20-0)**

 \bullet The *n*[-fold overlap and the Regge mode](#page-23-0)

⁴ [Summary and future directions](#page-26-0)

4 D F

a r

化重新 化重新

重

[Brief historical remarks on Regge physics](#page-2-0)

[What is the kinematics making up the Reggeon?](#page-8-0) [Regge behavior using the method of regions \(MOR\)](#page-11-0) [Summary and future directions](#page-26-0) [Regge original idea](#page-3-0) [Regge behavior in perturbation theory](#page-5-0)

T. Regge (1931-2014)

- Regge investigated the non-relativistic scattering off a Yukawa potential using the theory of complex angular momentum. $¹$ </sup>
- Before the advent of QCD, these ideas were carried over trying to describe relativistic hadron scattering.

 2990

¹T. Regge: Nuovo Cim. 14 951 (1959).

At very high energies, one interesting prediction of Regge theory is the emergence of power-law behavior in scattering amplitudes in the forward limit.

Regge behavior

As $s \to \infty$, t fixed, the **asymptotic** behavior of the amplitude grows as $\mathcal{M} \sim s^{\alpha(t)}$.

Our interest in this work is to describe Regge behavior in an EFT framework.

Motivation

Regge behavior turns logarithms to a power-law. How does Regge behavior arise in SCET?

 -111

Barbara

 209

[Regge original idea](#page-3-0) [Regge behavior in perturbation theory](#page-5-0)

Using a scalar theory with a cubic interaction, J. C. Polkinghorne demonstrated that Regge behavior emerges in perturbation theory.²

 $s = (p_1 + p_2)^2$, $t = (p_3 - p_1)^2$, $s \gg -t, m^2$.

• Seemingly very complicated, the Regge limit of the ladder graphs can nevertheless be analyzed and summed.

 2 J. C. Polkinghorne: J. Math. Phys. 4 503 (1963).

化重变 化重变性

目

[Regge original idea](#page-3-0) [Regge behavior in perturbation theory](#page-5-0)

• Let us analyze the box graph:

• Integrating over the loop momentum:

$$
i\mathcal{M}_{box} = i\frac{g^4}{16\pi^2} \int_{FP} \frac{\delta(1-x_1-x_2-y_1-y_2)}{(x_1x_2s+y_1y_2t-m^2D(x,y))^2}
$$

• The leading behavior of this graph precisely comes from the corner $x_i \sim 0$:

$$
i\mathcal{M}_{box} = ig^2 \beta(t) \frac{1}{-s} \ln(-s - i0)
$$

• The function $\beta(t)$ is what eventually defines the Regge exponent.

$$
\beta(t) = \frac{g^2}{16\pi^2} \int dy_1 dy_2 \frac{\delta(1 - y_1 - y_2)}{[m^2 - y_1 y_2 t]} = \frac{g^2}{4\pi} \int \frac{d^2 l_\perp}{(2\pi)^2} \frac{1}{[l_\perp^2 + m^2][(l_\perp + q_\perp)^2 + m^2]}.
$$

 -10.5

 2990

Ε

ヨメ メヨメ

[Regge original idea](#page-3-0) [Regge behavior in perturbation theory](#page-5-0)

• The cross-box: send $s \to u \approx -s$.

Note

In the sum, only the imaginary part of the box survives:

$$
\mathcal{M}^{box + crossed} = -g^2 \beta(t) \left[\frac{1}{s} \ln(-s) + \frac{1}{-s} \ln(s) \right] = \frac{i\pi}{s} g^2 \beta(t).
$$

• At higher loops:

$$
\mathcal{M}_{Total}^{(n)} = \frac{i\pi g^2}{s} \frac{\beta^n(t)}{(n-1)!} \ln^{n-1}(s)
$$

• Regge behavior emerges:

$$
\mathcal{M}_{Regge}=i\pi g^2\beta(t)s^{-1+\beta(t)}
$$

Lesson

Regge Logs come from the imaginary part of the ladder graphs which corresponds to the s-channel cut associated with all the rungs of the ladder becoming on-shell.

 -111

ヨメ イヨメー

[Strong ordering](#page-9-0)

Outline

¹ [Brief historical remarks on Regge physics](#page-2-0)

- [Regge original idea](#page-3-0)
- [Regge behavior in perturbation theory](#page-5-0)

² [What is the kinematics making up the Reggeon?](#page-8-0) **•** [Strong ordering](#page-9-0)

[Regge behavior using the method of regions \(MOR\)](#page-11-0)

- [The box graph: SCET vs. SCET](#page-12-0) $_G$
- **[The 2-loop ladder via Cutkosky rule](#page-20-0)**
- \bullet The *n*[-fold overlap and the Regge mode](#page-23-0)

⁴ [Summary and future directions](#page-26-0)

4 D F

化重新 化重新

重

The previous analysis does not lead to any insight into the momentum modes that make up the Reggeon.

- To answer the above question: use Cutkosky rule.
- Counting parameter:

$$
\lambda = \sqrt{\frac{-t}{s}}
$$

On-shell final states:

$$
q \sim \sqrt{s}(\lambda^2, \lambda^2, \lambda), \quad p^{\mu} = (p \cdot n, p \cdot \bar{n}, \mathbf{p}_{\perp})
$$

• The Reggeon is a Glauber object.

 \leftarrow \Box

 \rightarrow \equiv \rightarrow

• The answer is not that simple: strong ordering \rightarrow Regge logs

 $|l_1^+| \ll |l_2^+| \dots \ll |l_k^+| \ll |l_{k+1}^+| \ll \dots \ll |l_N^+|,$

 $l_1^- \gg l_2^-,\ldots \gg l_k^- \gg l_{k+1}^- \gg, \ldots \gg l_N^- .$

Donoghue & Wyler³ found:

Feature

To connect an n-collinear particle with an \bar{n} -collinear one, at least one of the loop momenta needs to be in the Glauber region.

Question

How can we understand strong ordering in EFT?

 3 J. F. Donoghue and D. Wyler: Phys. Rev. D 81, 114023 (2[010](#page-9-0))[.](#page-11-0) ④ 重 を ④ 重 を …

G.

[The box graph: SCET vs. SCET](#page-12-0) G
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

Outline

¹ [Brief historical remarks on Regge physics](#page-2-0)

- [Regge original idea](#page-3-0)
- [Regge behavior in perturbation theory](#page-5-0)

[What is the kinematics making up the Reggeon?](#page-8-0) • [Strong ordering](#page-9-0)

³ [Regge behavior using the method of regions \(MOR\)](#page-11-0)

- [The box graph: SCET vs. SCET](#page-12-0) $_G$ </sub>
- **[The 2-loop ladder via Cutkosky rule](#page-20-0)**
- \bullet The *n*[-fold overlap and the Regge mode](#page-23-0)

4 D F

化重新 化重新

Goal

Our goal is to employ the method of regions^a to study the ladder graphs and isolate the modes reposnsible for generating Regge behavior.

^aM. Beneke and V. A. Smirnov Nucl. Phys. B522, 321 (1998).

- The most important aspect: pinch analysis.
- The box graph: only collinear modes are pinched.

 n − collinear : $l \sim \sqrt{s}(\lambda^2, 1, \lambda), \quad \bar{n}$ − collinear : $l \sim \sqrt{s}(1, \lambda^2, \lambda)$

• Hard and ultra-soft modes: sub-leading.

メロメ メ御 メメ きょくきょう

 \equiv

The box graph: SCET vs. $SCET_G$
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

- Smirnov reproduced the full result of the massless box diagram⁴.
- Collinear modes using an analytic regulator:

Feature 1

The Glauber graph vansihes.

Feature 2

The overlap integrals are scaleless and therefore vanish.

Feature 3

The analytic regulator parameter cancels in the final answer.

⁴ V. A. Smirnov: Springer Tracts Mod. Phys. 177, 1 (2002). \leftrightarrow E.V. \equiv 209

- The computation is correct: conforms to the result of the pinch analysis.
- Conceptual problem: unitarity.
- Look back at collinear graphs:

Perhaps the imaginary part comes from a subregion of the collinear graphs. We need to employ a regulator that gives us the required insight.

4 D F

 QQ

きょうきょ

- Regulator: massive internal lines with $m^2 \sim \lambda^2$.
- Matching: need full QCD result.
- The answer contains a substantial number of dilogarithms.
- Nevertheless, when expanded in the Regge limit:

$$
\mathcal{M}^{(1)}_{\rm QCD}=\frac{i\pi g^2\beta(t)}{s}
$$

Note

The exact computation did not show any finite pieces accompanying the Regge log at one loop. This is not the case at two loops.

 -111

4 E 6 4 E 6

[The box graph: SCET vs. SCET](#page-12-0) G
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

• Matching in SCET:

$$
\mathcal{M}_n^{(1)} = \mathcal{M}_{\bar{n}}^{(1)} = \mathcal{M}_{\rm QCD}^{(1)}.
$$

The result is twice the QCD result: matching fails? Zero-bin subtraction 5 .

Note

The overlap integrals are no longer vanishing with our regulator.

• There is one overlap in this case:

$$
\mathcal{M}_{n/\bar{n}}^{(1)} = \mathcal{M}_{\text{QCD}}^{(1)}.
$$

• Including the overlap, matching works in SCET:

$$
\mathcal{M}_{\mathsf{SCET}}^{(1)} = \mathcal{M}_n^{(1)} + \mathcal{M}_{\bar{n}}^{(1)} - \mathcal{M}_{n/\bar{n}}^{(1)} = \mathcal{M}_{\mathsf{QCD}}^{(1)}.
$$

 5 A. V. Manohar and I. W. Stewart: Phys. Rev. D 76, 074002 (2007), B. Jantzen: J. High Energy Phys. 12 (2011) 076.

Lesson 1

The overlap integral being equal to the QCD result hints that the Regge log is coming from a subregion.

Use Cutkosky rule to pin down the true mode:

$$
\mathrm{Im}\, \mathcal{M}^{(1)}_{\mathrm{QCD}} = \frac{g^4}{16\pi^2 \sqrt{s}} \int\,d^4l \frac{\delta((p_1-l)^2-m^2)\delta(l^0)}{\sqrt{s}(l^0-l_z)(\sqrt{s}(l^0-l_z)+q^2-2\vec{l}\cdot\vec{q})}
$$

Recall

$$
l^+ = l^0 - l_z, \quad l^- = l^0 + l_z
$$

Delta function forces $l^0 = 0$: the true mode has $|l^+| = |l^-|$.

イロメ イ何メ イヨメ イヨメー

目

 209

The box graph: $SCET$ vs. $SCETG$
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

 \bullet The integal over l_z contains two roots. The smaller root is Taylor expanded:

$$
l_z^{\text{small}} = \frac{\Delta}{\sqrt{s}} \left(1 + \frac{\Delta}{s} + \dots \right), \quad \Delta = l_\perp^2 + m^2
$$

• The leading piece yields the Regge log.

Lesson 2

The true region that gives the imaginary part has a large transverse component.

The Glauber mode indeed plays a major role with our regulator.

• The Glauber graph:

$$
\mathcal{M}_G^{(1)} = \mathcal{M}_{\rm QCD}^{(1)}
$$

4 D F

 299

化重新 化重新

The box graph: SCET vs. $SCETG$
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

• The overlaps proliferate. All being equal to QCD:

$$
\mathcal{M}_{n/G}^{(1)} = \mathcal{M}_{\bar{n}/G}^{(1)} = \mathcal{M}_{n/\bar{n}/G}^{(1)} = \mathcal{M}_{\text{QCD}}^{(1)} \quad .
$$

The full overlap formula can be organized as follows:

$$
\begin{array}{lll} {\mathcal M}_{SCET_G}^{(1)} & = {\mathcal M}_n^{(1)} + {\mathcal M}_n^{(1)} + {\mathcal M}_G^{(1)} - {\mathcal M}_{n/\bar n}^{(1)} - {\mathcal M}_{n/G}^{(1)} - {\mathcal M}_{\bar n/G}^{(1)} + {\mathcal M}_{n/\bar n/G}^{(1)} \\ & = {\mathcal M}_G^{(1)} = {\mathcal M}_{QCD}^{(1)} . \end{array}
$$

Lesson 3

The genuine collinear contributions vanish with our regulator.

Lesson 4

At one loop, the Glauber mode is the true mode underlying Regge physics. In coformation with unitarity, it is the only mode forcing the intermediate states to be on-shell.

 -17.5

化重新 化重新

Presciprtion

Use $SCET_G$ and identify the graphs with on-shell intermediate states.

• From now onwards, we focus only on the imaginary part. At two loops, we find:

$$
\text{Im } \mathcal{M}_{\text{QCD}}^{(2)}(t=0) = \frac{g^6}{256\pi^5 s} \int d^2 l_1 d^2 l_2 \frac{1}{(\Delta_1 \Delta_2)^2} \left[\ln \frac{s}{\Delta_{12}} - 2 \right]
$$

$$
\theta \left(s - \left(\sqrt{\Delta_1} + \sqrt{\Delta_2} + \sqrt{\Delta_{12}} \right)^2 \right).
$$

$$
\Delta_1 = l_{1\perp}^2 + m^2, \quad \Delta_2 = l_{2\perp}^2 + m^2, \quad \Delta_{12} = (l_{1\perp} - l_{2\perp})^2 + m^2
$$

Note

There are extra pieces at leading order which come with the log.

4.0.3

 \leftarrow \leftarrow \leftarrow

- 4 重 8 - 4 重 8

[The box graph: SCET vs. SCET](#page-12-0) G
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

• The modes of interest at two loops are: $(n, G), (G, \bar{n}), (G, G)$.

Note

Notice the appearence of the Glauber connectors.

- The (G, G) mode is sub-leading.
- The contribution of the above modes is computable modulo one caveat.

Caveat

The internal masses do not suffice to regulate the infrared any more. We had to relax strict power counting in the arguments of the step functions to regulate the integrals.

 -17.5

化重新 化重新

[The box graph: SCET vs. SCET](#page-12-0) G
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

• The result for the (n, G) mode is:

$$
\mathrm{Im}\, \mathcal{M}^{(2)}_{nG} = \frac{g^6}{256\pi^5}\int\frac{d^2l_{1\perp}d^2l_{2\perp}}{s\,\Delta_1\Delta_2\Delta_{1q}\Delta_{2q}}\left[\ln\frac{s}{\Delta_{12}}+\frac{1}{2}\ln\frac{\Delta_{1q}}{\Delta_1}-\frac{\arctan U}{U}\right].
$$

$$
U = \sqrt{\frac{4\Delta_1\Delta_1 q}{(t+\Delta_1+\Delta_1 q)^2} - 1} \ge 0.
$$
 The answer is well behaved.

Note

In the limit $t = 0$, the arctangent piece is equal to 1.

• Similar to the one loop case, the (G, \bar{n}) mode yields an identical result. The overlap shows up once again!

4 0 F

ヨメ メヨメ

The box graph: SCET vs. $SCET_G$
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

The overlap integral must contain the Regge log. Indeed:

$$
\text{Im } \mathcal{M}^{(2)}_{nG/G\bar n} = \frac{g^6}{256\pi^5}\frac{1}{s}\int\; \frac{d^2 \textbf{l}_1 d^2 \textbf{l}_2}{\Delta_1\Delta_2\Delta_{1q}\Delta_{2q}}\; \ln \frac{s}{\Delta_{12}}
$$

• Matching works. We have the correct set of modes:

$$
\begin{aligned} \text{Im } \mathcal{M}_{\text{SCET}_{\text{G}}}^{(2)}(t=0) &= \frac{g^6}{256\pi^5} \int \frac{d^2 \mathbf{I}_1 d^2 \mathbf{I}_2}{s \ (\Delta_1 \Delta_2)^2} \left[\ln \frac{s}{\Delta_{12}} - 2 \right] \\ &= \text{Im } \mathcal{M}_{\text{QCD}}^{(2)}(t=0) \end{aligned}
$$

Lesson 5

Regge physics lives in the n -fold overlap of the graphs with on-shell intermediate states. At n loops, we have a total of n graphs with a **Glauber** cell connecting *n*-collinear momenta to \bar{n} -collinear ones.

Let us move to the 3-loop ladder and test this program.

 -17.5

化重氮化重氮化

[The box graph: SCET vs. SCET](#page-12-0) G
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

- At three loops, we have three graphs $(G, \bar{n}, \bar{n}), (n, G, \bar{n}), (n, n, G)$.
- The 3-fold overlap between the three modes is rather simple:

$$
\mathrm{Im}\, \mathcal{M}^{(3)}_{nnG/nG{\bar n}/G{\bar n}{\bar n}} = \frac{g^8}{512\pi^8}\,\frac{1}{2^3}\,\frac{1}{s}\int d^2\bm{l}_{1\perp}\,d^2\bm{l}_{2\perp}\,d^2\bm{l}_{3\perp}\,\frac{I_{l_1^-l_2^-}}{\Delta_1\Delta_2\Delta_3\Delta_{1q}\Delta_{2q}\Delta_{3q}}.
$$

$$
I_{l_1^-l_2^-}=\textstyle{\int_{{\Delta}/{\sqrt s}}^{{\sqrt s}} \frac{dl_2^-}{l_2^-} \int_{l_2^-}^{{\sqrt s}} \frac{dl_1^-}{l_1^-} \approx \frac{1}{2} \ln^2 s}.
$$

 \bullet The logic generalizes in a straightforward way to n-loops. The expanded propagators become transverse, and the remaining nested integral yields the Regge log with the correct numerical factor.

 -111

Barbara

Brief historical remarks on Regge physics What is the kinematics making up the Reggeon? [Regge behavior using the method of regions \(MOR\)](#page-11-0) [Summary and future directions](#page-26-0) Brief historical re
What is the kinematics n
Regge behavior using the me Regge behavior

the multi-overlap of all on-shell modes n…nG=n… 592

 $F_{\rm eff}$ the purposes of this paper we will refer to R

where we have allowed an extra possible overall factor of s 110 ^a

[The box graph: SCET vs. SCET](#page-12-0) G
[The 2-loop ladder via Cutkosky rule](#page-20-0) The n [-fold overlap and the Regge mode](#page-23-0)

• The strongly ordered region is a common subregion in any mode that forces the intermediate states on-shell: ward calculation similar to what we did at the similar to what we did at the similar to what we did at the sim
The similar to what we did at the similar to what we did at the similar to what we did at the similar to what order strung

 \bullet The overlap of all these modes; the $(\mathsf{Regge\ mode})$, is precisely what y ields the l yields the Regge logs and thus this is where Regge behavior lives.

4.0.3

 QQ

Ε

化重变 化重变

Outline

¹ [Brief historical remarks on Regge physics](#page-2-0)

- [Regge original idea](#page-3-0)
- [Regge behavior in perturbation theory](#page-5-0)

[What is the kinematics making up the Reggeon?](#page-8-0) • [Strong ordering](#page-9-0)

[Regge behavior using the method of regions \(MOR\)](#page-11-0)

- [The box graph: SCET vs. SCET](#page-12-0) $_G$
- **[The 2-loop ladder via Cutkosky rule](#page-20-0)**
- \bullet The *n*[-fold overlap and the Regge mode](#page-23-0)

4 O F

a r

化重复 化重变

重

- Regge behavior in field theory is very important from a phenomenology standpoint as it converts logarithms into powers of the energy.
- So far, Regge behavior has not been easy to understand within SCET.
- Using the method of regions, we were able to isolate the momentum modes responsible for Regge behavior in a scalar toy theory. Albeit technical details concerning regularization, we formed a good picture of the underlying physics.
- We found that Glauber modes are very efficient in describing Regge behavior.
- In the future, we hope to work with a full EFT appropriate for describing Regge behavior and apply it to phenomenological applicaions.

化重氮 化重氮

Thank you for listening.