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FIG. 1: Leading order contribution to forward quark-quark scattering at high energy: (a) QCD

diagram, (b) SCET diagram (dashed lines indicate collinear quarks, and dotted lines Glauber
gluons).

of Ref. [29, 30]. The coefficient of the rapidity divergent term is called the gluon Regge
trajectory which is infrared (IR) divergent. We then go on to consider the real emission of
a soft gluon from the Glauber interaction and derive the Lipatov vertex. With these results
in hand we calculate the total cross section for the forward scattering of high energy quarks.
We find that at next-to-leading order in αs this expression also has a rapidity divergence.
Absorbing this rapidity divergence into a rapidity counter-term allows us to derive a rapidity
RGE which is the famous BFKL equation. This then demonstrates the emergence of Regge
behavior in SCET from Glauber interactions between collinear particles.

We use SCET to study the scattering of two high energy quarks moving in opposite
directions q(p1) + q(p2) → q(p′1) + q(p′2) with large invariant mass s = (p1 + p2)2 and small
momentum transfer t = (p1 − p′1)

2 ≪ s. We also restrict ourselves to perturbative values of
t, where t ≫ Λ ∼ 1GeV. At leading order in the SCET power counting such an interaction
can be described by the exchange of an off-shell gluon between the quarks, resulting in
a two-dimensional Coulomb like potential in transverse momentum. To see how such an
operator arises in SCET we start with QCD and match onto SCET degrees of freedom. The
QCD diagram is given in Fig. 1(a). For the sake of matching we can take all the quarks
to be massless and on-shell. In addition, the momentum p⃗1 defines the z-axis. Then, the
incoming momentum can be expressed in terms of two light-like vectors nµ = (1, 0, 0, 1) and
n̄µ = (1, 0, 0,−1):

pµ1 =

√
s

2
nµ pµ2 =

√
s

2
n̄µ . (1)

The outgoing momentum can be expressed in a Sudakov decomposed form as well:

p′µ1 =
1

2
(
√
s− n̄ · k)nµ − 1

2
n · k n̄µ − kµ

⊥ (2)

p′µ2 =
1

2
n̄ · k nµ +

1

2
(
√
s+ n · k) n̄µ + kµ

⊥ .
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The outgoing quarks are taken to be on-shell so they must have

n · k =
k⃗2
⊥√

s− n̄ · k n̄ · k =
k⃗2
⊥√

s+ n · k . (3)

In the forward region we have k2 = n · k n̄ · k + k⃗2
⊥ = t so that kµ

⊥ ∼
√
t and the above

equation implies n · k ∼ n̄ · k ∼ t/
√
s ≪ kµ

⊥. In this region the out-going momenta reduce to

p′µ1 ≈
√
s

2
nµ +

k⃗2
⊥
2
n̄µ − kµ

⊥ p′µ2 ≈ +
k⃗2
⊥
2

nµ +

√
s

2
n̄µ + kµ

⊥ , (4)

where k2 ≈ −k⃗2
⊥. We carry out the matching depicted in Fig. 1 by expanding the QCD

amplitude in the forward region

AQCD = − g2

k⃗2
⊥
ū(p′1)T

aγµu(p1)ū(p
′
2)T

aγµu(p2) ≈ −n · n̄ g2

k⃗2
⊥

ξ̄nT
a /̄n

2
ξnξ̄n̄T

a/n

2
ξn̄ , (5)

where ξn and ξn̄ are the high-energy limit of the QCD spinors for quarks moving in the
nµ and n̄µ direction respectively. This amplitude is reproduced by the SCET operator first
derived in Ref. [22]

Onn̄
G = −2 g2

k⃗2
⊥
ξ̄p′1,nT

a /̄n

2
ξp1,nξ̄p′2,n̄T

a/n

2
ξp2,n̄ , (6)

where ξp1,n and ξp2,n̄ are SCET quark fields. This operator is not gauge invariant under
separate gauge transformations in the n and n̄ sectors, but can be made so by adding the
appropriate SCET collinear Wilson lines [14]

Wn =
∑

perms
exp

(
− g

n̄ · P n̄ · Aq,n

)
and Wn̄ =

∑

perms
exp

(
− g

n · P n · Aq,n̄

)
. (7)

In addition, soft gluons with momentum that scales as kµ
s ∼

√
t can be radiated from the

collinear quarks. While such an interaction puts the collinear quark off-shell, it is order one
in the power counting and must be summed into a soft Wilson line [15]

Sn =
∑

perms
exp

(
−g

n · P n · As,q

)
Sn̄ =

∑

perms
exp

(
−g

n̄ · P n̄ · As,q

)
. (8)

Including both collinear and soft Wilson liens we arrive at the n-n̄ collinear Glauber operator

Onn̄
G = −8π αs(µ) ξ̄p′2,n̄Wn̄Y

†
n̄T

a/n

2
Yn̄W

†
n̄ξp2,n̄

1

P⃗2
⊥
ξ̄p′1,nWnY

†
nT

a /̄n

2
YnW

†
nξp1,n . (9)

There are also collinear-soft Glauber operators which were considered in detail in Refs. [19–
21]. These operators have leading order Feynman diagrams depicted in Fig. 2 (not shown is
the coupling to a soft ghost), however, they are not needed here.

Next, we renormalize the operator in Eq. (9). The diagrams that contribute are shown
in Fig. 3. The double lines in the diagrams in (a) indicate that a soft gluon is emitted
from one of the soft Wilson lines. The diagrams in (a) are ultraviolet (UV) finite, but
contain a rapidity divergence. The first two diagrams in (b) (plus a ghost-loop that is not
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the coupling to a soft ghost), however, they are not needed here.

Next, we renormalize the operator in Eq. (9). The diagrams that contribute are shown
in Fig. 3. The double lines in the diagrams in (a) indicate that a soft gluon is emitted
from one of the soft Wilson lines. The diagrams in (a) are ultraviolet (UV) finite, but
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FIG. 4: Real emission of soft gluons from the n-n̄ Glauber interaction: (a) emission from the soft

Wilson lines, (b) emission from the Glauber gluon.

give an expression for I(k⃗⊥) regulating the IR divergences with dimensional regularization:
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where µ̄2 = 4πµ2e−γ . The rapidity divergence corresponds to the term that diverges as
η → 0. This rapidity pole must be subtracted by a rapidity counter-term. However, as the
rapidity divergent term contains IR divergences a sensible rapidity RGE can not be derived.
This issue is fixed if we consider forward scattering and include real emission diagrams.

The emission of a real soft gluon can occur from any of the soft Wilson lines as shown
in Fig. 4(a) or from the exchanged Glauber gluon as shown in Fig. 4(b). The amplitude for
the sum of the four diagrams in Fig. 4(a) is

4∑

i=1

Ai
real = −2 g2

1

k⃗2
⊥

1

k⃗
′2
⊥
ξ̄nT

a /̄n

2
ξnξ̄n̄T

b/n

2
ξn̄(−igfabc)

(
nα

n · k′ k⃗
2
⊥ +

n̄α

n̄ · k k⃗
′2
⊥

)
(14)

7

emission from 
soft Wilson line

The Glauber interaction in SCET

`µ

`µ

`µ

`µ

k0µ

k0µ

kµ

kµ

`µ =
1

2
n̄ · k nµ � 1

2
n · k0 n̄µ + (k � k0)µ?

mµ /
✓

n⇢

n · k0
1

k
02
?

+
n̄⇢

n̄ · k0
1

k2?

◆ ` ·m / 1

k
02
?

� 1

k2?
6= 0



Real emission from Glauber(a)

(b)

FIG. 4: Real emission of soft gluons from the n-n̄ Glauber interaction: (a) emission from the soft

Wilson lines, (b) emission from the Glauber gluon.
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The Glauber interaction in SCET and the BFKL equation

Renormalization of the Glauber interaction Lnn̄
G

(a)

(b)

FIG. 3: One loop Feynman diagrams contributing to the renormalization of Onn̄
G . The double line

in the diagrams in (a) indicate soft gluon emission from a Wilson line. These diagrams have a
rapidity divergence which gives the gluon Regge trajectory. The diagrams in (b) have no rapidity
divergence, but have UV divergences. The first two diagrams involve soft gluons and soft quarks

(the soft-ghost loop diagram is not shown), and the UV divergence in these diagrams is cancelled
by a soft Lagrangian counter-term. The last diagram involves the exchange of a collinear gluon

(spring with a line) and the UV divergence is cancelled by a collinear Lagrangian counter-term.

integral above becomes
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where w(ν) is a bookkeeping parameter that has been introduced for convenience in deriving
the rapidity RGE, and will eventually will be set to one [29, 30]. For completeness we also
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The Glauber interaction in SCET and the BFKL equation

(a) (b)

FIG. 2: Leading order Feynman diagrams corresponding to operators that couple collinear and

soft degrees of freedom via Glauber exchange: (a) collinear quark coupling to a soft gluon, (b)
collinear quark coupling to a soft quark (solid line). Not shown is the collinear quark coupling to

a soft ghost.

shown) are time-ordered products of two of the operators that give the tree-level diagrams
in Fig. 2. They are UV divergent but do not have a rapidity divergence, and are needed
to give the correct RG for the Glauber gluon coupling constant. An explicit calculation of
these diagrams has not been carried out so far, and clearly would be an important check on
the formalism. The third diagram in (b) comes from a time ordered product of the collinear
Glauber operator with terms from the SCET Lagrangian that couple collinear gluons to
collinear quarks. This diagram also has a UV divergence, which is cancelled by the collinear
Lagrangian vertex counter-term. As this diagram involves only collinear degrees of freedom
moving in the same direction it is the same as the renormalization of the QCD quark-gluon
vertex [31].

The physics of interest is associated with the rapidity divergence, so we will focus on the
diagrams in Fig 3(a). The sum of these four diagrams gives

A = −8παs(µ) ξ̄nT
a /̄n

2
ξnξ̄n̄T

a/n

2
ξn̄

[
iNcαs(µ)I(k⃗⊥)

]
, (10)

where

I(k⃗⊥) =
∫

dq−

q−

∫
d2q⊥
(2π)2

1

q⃗ 2
⊥

1

(q⃗ + k⃗)2⊥
. (11)

In obtaining the expression in Eq. (10) a symmetry factor of one-half needs to be included
as the first two diagrams in Fig 3(a) are identical to the second two diagrams. The integral
over q− results in a rapidity divergence, while the integral over q⊥, which in the literature
is called the gluon Regge trajectory, contains IR divergences. To evaluate this integral we
will need to introduce regulators for both types of divergences. Here we will regulate the
rapidity divergence using the methods developed in Ref. [29, 30], and use a gluon mass
(or dimensional regularization) to regulate IR divergences. With these modifications the
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Gluon Regge Trajectory

Expanding around η = 0 we can isolate the rapidity divergent term

σ =
2α2

sCF

Nc

∫
d2k⃗⊥

k⃗2
⊥

∫
d2k⃗⊥

k⃗′′2
⊥

{
δ(2)(k⃗⊥ − k⃗′

⊥) (21)

+

(
αsNc

π2

)
w(ν)2

η

∫
d2q⊥

(q⃗⊥ − k⃗⊥)2

[
δ(2)(q⃗⊥ − k⃗′

⊥)−
k⃗2
⊥

2q⃗ 2
⊥
δ(2)(k⃗⊥ − k⃗′

⊥)

]
+ . . .

}
,

where the dots represent NLO terms that are finite in the η → 0 limit. This result raises the
important question of how the rapidity divergence is subtracted. In SCET without Glauber
gluons collinear and soft degrees of freedom factor and observables can often be expressed
as convolutions of matrix elements of operators involving only collinear or soft degrees of
freedom. If the factorization of soft and collinear holds in the presence of Glauber gluons then
it may be that the above cross section can also be expressed as a convolution of the matrix
element of a soft operator with the matrix element of an n-collinear operator and the matrix
element of an n̄-collinear operator. In this case the counter-term for the soft operator would
cancel the rapidity divergence. Such a factorization is suggested by the standard treatment
in the literature [28], where the two-dimension Dirac delta function in transverse-momentum
space is interpreted as the BFKL Green function. The rapidity divergence is then canceled by
a counter-term for this Green function. However, factorization of the Glauber interaction in
SCET requires an all orders summation of soft gluons, which has not yet been accomplished.
A first step in this direction has recently been made in Ref. [32] where it is shown that in
a scalar theory with n-collinear modes, n̄-collinear modes, and Glauber modes an all orders
summation of ladder graphs gives the leading Regge behavior. We will leave the summation
of soft gluons for a future work, and motivated by the BFKL approach will for the time
being conjecture that the cross section factors. We renormalize the rapidity divergence by
identifying the two-dimension Dirac delta function in transverse-momentum space as the
leading order vacuum matrix element of a (currently unknown) operator, Osoft

G , involving
soft fields: G(k⃗⊥ − k⃗′

⊥) ≡ ⟨OG,soft⟩. Then

G(k⃗⊥ − k⃗′
⊥, ν) =

∫
d2ℓ⊥Z−1(k⃗⊥ − ℓ⃗⊥; η, ν)G(ℓ⃗⊥ − k⃗′

⊥; ν)
(0) (22)

=

∫
d2ℓ⊥Z−1(k⃗⊥ − ℓ⃗⊥; η, ν)δ

(2)(ℓ⃗⊥ − k⃗′
⊥)

= δ(2)(k⃗⊥ − k⃗′
⊥) + counterterms ,

where the superscript (0) indicates the matrix element of the bare operator. Inverting the
above equation leads to

δ(2)(k⃗⊥ − k⃗′
⊥) =

∫
d2ℓ⊥Z(k⃗⊥ − ℓ⃗⊥; η, ν)G(ℓ⃗⊥ − k⃗′

⊥; ν) . (23)

The rapidity divergence term in Eq. (21) is cancelled by setting

Z(k⃗⊥ − ℓ⃗⊥; η, ν) = δ(2)(k⃗⊥ − ℓ⃗⊥)−
(
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π2
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w(ν)2

η
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1
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(24)

−1

2
δ(2)(k⃗⊥ − ℓ⃗⊥)

∫
d2q⊥

(q⃗⊥ − k⃗⊥)2
k⃗2
⊥

q⃗ 2
⊥

]
.
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Real contributions

(a)

(b)

FIG. 4: Real emission of soft gluons from the n-n̄ Glauber interaction: (a) emission from the soft

Wilson lines, (b) emission from the Glauber gluon.

give an expression for I(k⃗⊥) regulating the IR divergences with dimensional regularization:

I(k⃗⊥) = −i(4πµ2)ϵ
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⊥
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24
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,

where µ̄2 = 4πµ2e−γ . The rapidity divergence corresponds to the term that diverges as
η → 0. This rapidity pole must be subtracted by a rapidity counter-term. However, as the
rapidity divergent term contains IR divergences a sensible rapidity RGE can not be derived.
This issue is fixed if we consider forward scattering and include real emission diagrams.

The emission of a real soft gluon can occur from any of the soft Wilson lines as shown
in Fig. 4(a) or from the exchanged Glauber gluon as shown in Fig. 4(b). The amplitude for
the sum of the four diagrams in Fig. 4(a) is
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⊥
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where µ̄2 = 4πµ2e−γ . The rapidity divergence corresponds to the term that diverges as
η → 0. This rapidity pole must be subtracted by a rapidity counter-term. However, as the
rapidity divergent term contains IR divergences a sensible rapidity RGE can not be derived.
This issue is fixed if we consider forward scattering and include real emission diagrams.

The emission of a real soft gluon can occur from any of the soft Wilson lines as shown
in Fig. 4(a) or from the exchanged Glauber gluon as shown in Fig. 4(b). The amplitude for
the sum of the four diagrams in Fig. 4(a) is
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and the amplitude for the diagram in Fig. 4(b) is

A5
real = −2 g2

1
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⊥

1
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′2
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ξ̄nT

a /̄n

2
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2
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⊥ + k

′α
⊥ − 1

2
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2
nαn̄ · k

)
, (15)

where the soft gluon momentum is qµ = kµ−k
′µ ≈ 1

2 n̄ ·kn
µ− 1

2n ·k
′n̄µ+(k⊥−k′

⊥)
µ. Adding

these up we arrive at the Lipatov vertex

A L = −2 g2
1

k⃗2
⊥

1

k⃗
′2
⊥
ξ̄nT

a /̄n

2
ξnξ̄n̄T

b/n

2
ξn̄ (16)

×(igfabc)

(
kα
⊥ + k

′α
⊥ − 1

2
n̄αn · k′ − 1

2
nαn̄ · k − nα

n · k′ k⃗
2
⊥ − n̄α

n̄ · k
k⃗

′2
⊥

)
.

This vertex is gauge invariant, as can be explicitly verified by contracting with the external
gluon momentum.

Now we have all the pieces needed to calculate the quark scattering cross section in the
forward region. Squaring the amplitude in Eq. (5) we obtain the tree level cross section

σLO =
2α2

sCF

Nc

∫
d2k⃗2

⊥

k⃗2
⊥

∫
d2k⃗

′2
⊥

k⃗
′2
⊥

δ(2)(k⃗⊥ − k⃗′
⊥) . (17)

The NLO virtual corrections give

σNLO
V =

2α2
sCF

Nc

∫
d2k⃗⊥

k⃗2
⊥

∫
d2k⃗′

⊥

k⃗
′2
⊥

δ(2)(k⃗⊥ − k⃗′
⊥) (18)

×
(
− αsNc

2π2

)
ν2ηw(ν)2

Γ(η)Γ
(
1
2 − η

)
√
π

∫
d2q⊥

k⃗2
⊥

q⃗ 2
⊥

1

[(q⃗⊥ − k⃗⊥)2]1+η
.

The NLO real corrections can be obtained by the standard method of squaring the amplitude
and summing over final states, or by taking the cut of the forward scattering graph in the
Glauber regime. In order to incorporate the rapidity regulator we use the latter method to
obtain

σNLO
R =

2α2
sCF

Nc

∫
d2k⃗⊥

k⃗2
⊥

∫
d2k⃗′

⊥

k⃗
′2
⊥

(19)

×
(
αsNc

π2

)
ν2ηw(ν)2

Γ(η)Γ
(
1
2 − η

)
√
π

∫
d2q⊥

δ(2)(q⃗⊥ − k⃗′
⊥)

[(q⃗⊥ − k⃗⊥)2]1+η
.

In order to ensure that there is no double counting in SCET the soft-Glauber overlap region
needs to be subtracted from the above results, however in this case the overlap region
vanishes. Adding these up we arrive at an expression for the forward scattering cross section
accurate to NLO

σ =
2α2

sCF

Nc

∫
d2k⃗⊥

k⃗2
⊥

∫
d2k⃗⊥

k⃗′′2
⊥

{
δ(2)(k⃗⊥ − k⃗′

⊥) +

(
αsNc

π2

)
Γ(η)Γ

(
1
2 − η

)
√
π

ν2ηw(ν)2 (20)

×
∫

d2q⊥

[(q⃗⊥ − k⃗⊥)2]1+η

[
δ(2)(q⃗⊥ − k⃗′

⊥)−
k⃗2
⊥

2q⃗ 2
⊥
δ(2)(k⃗⊥ − k⃗′

⊥)

]}
.
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The NLO expression determined from all diagrams is

Expanding around η = 0 we can isolate the rapidity divergent term

σ =
2α2

sCF

Nc

∫
d2k⃗⊥

k⃗2
⊥

∫
d2k⃗⊥

k⃗′′2
⊥

{
δ(2)(k⃗⊥ − k⃗′

⊥) (21)

+

(
αsNc

π2

)
w(ν)2

η

∫
d2q⊥

(q⃗⊥ − k⃗⊥)2

[
δ(2)(q⃗⊥ − k⃗′

⊥)−
k⃗2
⊥

2q⃗ 2
⊥
δ(2)(k⃗⊥ − k⃗′

⊥)

]
+ . . .

}
,

where the dots represent NLO terms that are finite in the η → 0 limit. This result raises the
important question of how the rapidity divergence is subtracted. In SCET without Glauber
gluons collinear and soft degrees of freedom factor and observables can often be expressed
as convolutions of matrix elements of operators involving only collinear or soft degrees of
freedom. If the factorization of soft and collinear holds in the presence of Glauber gluons then
it may be that the above cross section can also be expressed as a convolution of the matrix
element of a soft operator with the matrix element of an n-collinear operator and the matrix
element of an n̄-collinear operator. In this case the counter-term for the soft operator would
cancel the rapidity divergence. Such a factorization is suggested by the standard treatment
in the literature [28], where the two-dimension Dirac delta function in transverse-momentum
space is interpreted as the BFKL Green function. The rapidity divergence is then canceled by
a counter-term for this Green function. However, factorization of the Glauber interaction in
SCET requires an all orders summation of soft gluons, which has not yet been accomplished.
A first step in this direction has recently been made in Ref. [32] where it is shown that in
a scalar theory with n-collinear modes, n̄-collinear modes, and Glauber modes an all orders
summation of ladder graphs gives the leading Regge behavior. We will leave the summation
of soft gluons for a future work, and motivated by the BFKL approach will for the time
being conjecture that the cross section factors. We renormalize the rapidity divergence by
identifying the two-dimension Dirac delta function in transverse-momentum space as the
leading order vacuum matrix element of a (currently unknown) operator, Osoft

G , involving
soft fields: G(k⃗⊥ − k⃗′

⊥) ≡ ⟨OG,soft⟩. Then

G(k⃗⊥ − k⃗′
⊥, ν) =

∫
d2ℓ⊥Z−1(k⃗⊥ − ℓ⃗⊥; η, ν)G(ℓ⃗⊥ − k⃗′

⊥; ν)
(0) (22)

=

∫
d2ℓ⊥Z−1(k⃗⊥ − ℓ⃗⊥; η, ν)δ

(2)(ℓ⃗⊥ − k⃗′
⊥)

= δ(2)(k⃗⊥ − k⃗′
⊥) + counterterms ,

where the superscript (0) indicates the matrix element of the bare operator. Inverting the
above equation leads to

δ(2)(k⃗⊥ − k⃗′
⊥) =

∫
d2ℓ⊥Z(k⃗⊥ − ℓ⃗⊥; η, ν)G(ℓ⃗⊥ − k⃗′

⊥; ν) . (23)

The rapidity divergence term in Eq. (21) is cancelled by setting

Z(k⃗⊥ − ℓ⃗⊥; η, ν) = δ(2)(k⃗⊥ − ℓ⃗⊥)−
(
αsNc

π2

)
w(ν)2

η

[
1

(k⃗⊥ − ℓ⃗⊥)2
(24)

−1

2
δ(2)(k⃗⊥ − ℓ⃗⊥)

∫
d2q⊥

(q⃗⊥ − k⃗⊥)2
k⃗2
⊥

q⃗ 2
⊥

]
.

9

Isolating the rapidity divergent term:
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Assume the cross section factorizes into soft and collinear
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}
,

where the dots represent NLO terms that are finite in the η → 0 limit. This result raises the
important question of how the rapidity divergence is subtracted. In SCET without Glauber
gluons collinear and soft degrees of freedom factor and observables can often be expressed
as convolutions of matrix elements of operators involving only collinear or soft degrees of
freedom. If the factorization of soft and collinear holds in the presence of Glauber gluons then
it may be that the above cross section can also be expressed as a convolution of the matrix
element of a soft operator with the matrix element of an n-collinear operator and the matrix
element of an n̄-collinear operator. In this case the counter-term for the soft operator would
cancel the rapidity divergence. Such a factorization is suggested by the standard treatment
in the literature [28], where the two-dimension Dirac delta function in transverse-momentum
space is interpreted as the BFKL Green function. The rapidity divergence is then canceled by
a counter-term for this Green function. However, factorization of the Glauber interaction in
SCET requires an all orders summation of soft gluons, which has not yet been accomplished.
A first step in this direction has recently been made in Ref. [32] where it is shown that in
a scalar theory with n-collinear modes, n̄-collinear modes, and Glauber modes an all orders
summation of ladder graphs gives the leading Regge behavior. We will leave the summation
of soft gluons for a future work, and motivated by the BFKL approach will for the time
being conjecture that the cross section factors. We renormalize the rapidity divergence by
identifying the two-dimension Dirac delta function in transverse-momentum space as the
leading order vacuum matrix element of a (currently unknown) operator, Osoft

G , involving
soft fields: G(k⃗⊥ − k⃗′

⊥) ≡ ⟨OG,soft⟩. Then

G(k⃗⊥ − k⃗′
⊥, ν) =

∫
d2ℓ⊥Z−1(k⃗⊥ − ℓ⃗⊥; η, ν)G(ℓ⃗⊥ − k⃗′

⊥; ν)
(0) (22)

=

∫
d2ℓ⊥Z−1(k⃗⊥ − ℓ⃗⊥; η, ν)δ

(2)(ℓ⃗⊥ − k⃗′
⊥)

= δ(2)(k⃗⊥ − k⃗′
⊥) + counterterms ,

where the superscript (0) indicates the matrix element of the bare operator. Inverting the
above equation leads to

δ(2)(k⃗⊥ − k⃗′
⊥) =

∫
d2ℓ⊥Z(k⃗⊥ − ℓ⃗⊥; η, ν)G(ℓ⃗⊥ − k⃗′
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The rapidity divergence term in Eq. (21) is cancelled by setting

Z(k⃗⊥ − ℓ⃗⊥; η, ν) = δ(2)(k⃗⊥ − ℓ⃗⊥)−
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)
w(ν)2
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[
1
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Derive R-RGE for G

Inserting this expression into Eq. (23) we find

δ(2)(k⃗⊥ − k⃗′
⊥) = G(k⃗⊥ − k⃗′

⊥; ν)−
(
αsNc

π2

)
w(ν)2

η

[ ∫
d2q⊥

G(q⃗⊥ − k⃗′
⊥; ν)

(q⃗⊥ − k⃗⊥)2
(25)

−1

2
G(k⃗⊥ − k⃗′

⊥; ν)

∫
d2q⊥

(q⃗⊥ − k⃗⊥)2
k⃗2
⊥

q⃗ 2
⊥

]
,

which when used in Eq. (21) gives

σ =
2α2

sCF

Nc

∫
d2k⃗⊥

k⃗2
⊥

∫
d2k⃗

′
⊥

k⃗
′2
⊥

G(k⃗⊥ − k⃗′
⊥; ν) + . . . (26)

where the singular terms in η cancel and the dots indicate NLO terms that do not vanish
in the η → 0 limit. The dependence of G(k⃗⊥ − k⃗′

⊥; ν) on ν is given by the rapidity RGE

d

d ln ν
G(k⃗⊥ − k⃗′

⊥; ν) =

∫
d2ℓ⊥γν(k⃗

′
⊥ − ℓ⃗⊥)G(ℓ⃗⊥ − k⃗′

⊥; ν) , (27)

where the rapidity anomalous dimension is determined from

γν(k⃗⊥ − k⃗′
⊥) =

∫
d2ℓ⊥Z(ℓ⃗⊥,−k⃗′

⊥; η, ν)
−1 d

d ln ν
Z(k⃗⊥ − ℓ⃗⊥; η, ν) . (28)

Using
d

d ln ν
=

∂

∂ ln ν
− w(ν)2η

∂

∂w2
(29)

we find the leading-log (LL) rapidity anomalous dimension

γν(k⃗⊥ − k⃗′
⊥) =

(
αsNc

π2

)[
1

(k⃗⊥ − k⃗′
⊥)

2
− 1

2
δ(2)(k⃗⊥ − k⃗′

⊥)

∫
d2q⊥

(q⃗⊥ − k⃗⊥)2
k⃗2
⊥

q⃗ 2
⊥

]
, (30)

where we set w(ν) = 1. Using this LL expression in Eq. (27) gives

d

d ln ν
G(k⃗⊥ − k⃗′

⊥; ν) =

(
αsNc

π2

)∫
d2q⊥

(q⃗⊥ − k⃗⊥)2

[
G(q⃗⊥ − k⃗′

⊥; ν)−
k⃗2
⊥

2q⃗ 2
⊥
G(k⃗⊥ − k⃗′

⊥; ν)

]
. (31)

This is the BFKL equation [compare to Eq. (3.58) in Ref. [28]]. It can be solved by expanding
G(k⃗⊥ − k⃗′

⊥; ν) in eigenfunctions

G(k⃗⊥ − k⃗′
⊥; ν) =

∞∑

n=−∞

∫ a+i∞

a−i∞

dγ

2πi
Cn,γ(ν)|⃗k⊥|2(γ−1) |⃗k′

⊥|2(γ
∗−1)ein(φ−φ′) , (32)

running in rapidity from ln νi ∼ 0 to ln νf ∼ ln s, and then taking the inverse transform [28].
The last step can only be done approximately. For large ln νf one finds

G(k⃗⊥ − k⃗′
⊥; s) = (33)

1

2π2|⃗k⊥||⃗k′
⊥|

√
π2

14ζ(3)αs(µ)Ncs
Exp

[
4αs(µ)Nc

π
ln 2 ln s− π ln2(|⃗k⊥|/|⃗k′

⊥|
14ζ(3)αs(µ)Ncs

]
,
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This is the BFKL equation
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we find the leading-log (LL) rapidity anomalous dimension

γν(k⃗⊥ − k⃗′
⊥) =

(
αsNc

π2

)[
1

(k⃗⊥ − k⃗′
⊥)

2
− 1

2
δ(2)(k⃗⊥ − k⃗′

⊥)

∫
d2q⊥

(q⃗⊥ − k⃗⊥)2
k⃗2
⊥

q⃗ 2
⊥

]
, (30)

where we set w(ν) = 1. Using this LL expression in Eq. (27) gives

d

d ln ν
G(k⃗⊥ − k⃗′

⊥; ν) =

(
αsNc

π2

)∫
d2q⊥

(q⃗⊥ − k⃗⊥)2

[
G(q⃗⊥ − k⃗′

⊥; ν)−
k⃗2
⊥

2q⃗ 2
⊥
G(k⃗⊥ − k⃗′

⊥; ν)

]
. (31)

This is the BFKL equation [compare to Eq. (3.58) in Ref. [28]]. It can be solved by expanding
G(k⃗⊥ − k⃗′

⊥; ν) in eigenfunctions

G(k⃗⊥ − k⃗′
⊥; ν) =

∞∑

n=−∞

∫ a+i∞

a−i∞

dγ

2πi
Cn,γ(ν)|⃗k⊥|2(γ−1) |⃗k′

⊥|2(γ
∗−1)ein(φ−φ′) , (32)

running in rapidity from ln νi ∼ 0 to ln νf ∼ ln s, and then taking the inverse transform [28].
The last step can only be done approximately. For large ln νf one finds

G(k⃗⊥ − k⃗′
⊥; s) = (33)

1

2π2|⃗k⊥||⃗k′
⊥|

√
π2

14ζ(3)αs(µ)Ncs
Exp

[
4αs(µ)Nc

π
ln 2 ln s− π ln2(|⃗k⊥|/|⃗k′

⊥|
14ζ(3)αs(µ)Ncs

]
,
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