Summing logarithms with a parton shower

Davison E. Soper University of Oregon

work with Zoltan Nagy, DESY

SCET Workshop, Santa Fe, 2015

The prequel

- Parton shower event generators are an important tool for physics.
- Zoltan Nagy (DESY) and I have a parton shower event generator, DEDUCTOR.

DEDUCTOR

- http://pages.uoregon.edu/soper/deductor/
- Dipole shower.
- In principle, uses quantum density matrix in color & spin.
- LC+ approximation for color.
- Non-zero b and c quark masses.
- See M. Czakon, H. B. Hartanto, M. Kraus and M. Worek "Matching the Nagy-Soper parton shower at next-to-leading order."

Coming in Deductor

- Perturbative improvement to LC+ approximation.
- Quantum spin.
- Threshold logs (this talk).
- Choices, e.g. for definition of ordering variable.
- Interface to hadronization model.

Shower evolution

- Showers develop in "shower time."
- Hardest interactions first.

Real time picture

Shower time picture

Shower ordering variable

- Originally, Pythia used virtuality to order splittings.
- Now, Pythia and Sherpa use " $k_{\rm T}$."
- Deductor uses Λ ,

$$\Lambda_i^2 = \frac{p_i^2 - m_i^2}{2 p_i \cdot Q_0} Q_0^2 \qquad \text{(final state)}$$

$$\Lambda_i^2 = \frac{|p_i^2 - m_i^2|}{2\eta_i \, p_A \cdot Q_0} \, Q_0^2 \quad \text{(initial state)}$$

where

 Q_0 is a fixed timelike vector; p_A is the incoming hadron momentum; η_i is the parton momentum fraction.

Contrast with SCET

- SCET divides gluon emissions into hard, collinear to hadron A, collinear to hadron B, and soft.
- Each region gets its own special treatment.
- Since the boundaries between regions should not matter, we get differential equations to solve.

- In a parton shower, we have just two regions: hard and everything else.
- We solve a differential equation in the hardness variable that sets the boundary between hard and everything else.
- We count on having a good approximation to sort out collinear regions from the soft region.

Evolution equation

The shower state evolves in shower time.

$$|\rho(t)\rangle = \mathcal{U}_{\mathcal{V}}(t, t')|\rho(t')\rangle$$

$$\frac{d}{dt}\mathcal{U}_{\mathcal{V}}(t,t') = [\mathcal{H}_{\mathrm{I}}(t) - \mathcal{V}(t)]\mathcal{U}_{\mathcal{V}}(t,t')$$

$$\mathcal{H}_{\rm I}(t) = {
m splitting operator}$$

$$V(t)$$
 = no-splitting operator

An obvious question

• Is this going to sum large logarithms?

Logarithms of p

- Consider $A + B \rightarrow Z + X$
- Measure the p_{\perp} of the Z-boson for $p_{\perp}^2 \ll M_Z^2$,

$$\frac{d\sigma}{dp_{\perp}dY}$$

- There are large logarithms $\log(M_Z^2/p_\perp^2)$.
- We know how to sum these in QCD.

The QCD answer,

$$\frac{d\sigma}{d\boldsymbol{p}_{\perp}dY} \approx \int \frac{d^{2}\boldsymbol{b}}{(2\pi)^{2}} e^{i\boldsymbol{b}\cdot\boldsymbol{p}_{\perp}}$$

$$\times \sum_{a,b} \int_{x_{a}}^{1} \frac{d\eta_{a}}{\eta_{a}} \int_{x_{b}}^{1} \frac{d\eta_{b}}{\eta_{b}} f_{a/A}(\eta_{a}, C^{2}/\boldsymbol{b}^{2}) f_{b/B}(\eta_{b}, C^{2}/\boldsymbol{b}^{2})$$

$$\times \exp\left(-\int_{C^{2}/\boldsymbol{b}^{2}}^{M^{2}} \frac{d\boldsymbol{k}_{\perp}^{2}}{\boldsymbol{k}_{\perp}^{2}} \left[A(\alpha_{s}(\boldsymbol{k}_{\perp}^{2})) \log\left(\frac{M^{2}}{\boldsymbol{k}_{\perp}^{2}}\right) + B(\alpha_{s}(\boldsymbol{k}_{\perp}^{2}))\right]\right)$$

$$\times \sum_{a',b'} H_{a'b'}^{(0)} C_{a'a}\left(\frac{x_{a}}{\eta_{a}}, \alpha_{s}\left(\frac{C^{2}}{\boldsymbol{b}^{2}}\right)\right) C_{b'b}\left(\frac{x_{b}}{\eta_{b}}, \alpha_{s}\left(\frac{C^{2}}{\boldsymbol{b}^{2}}\right)\right) .$$

$$A(\alpha_{s}) = 2 C_{F} \frac{\alpha_{s}}{2\pi} + 2 C_{F} \left\{C_{A} \left[\frac{67}{18} - \frac{\pi^{2}}{6}\right] - \frac{5 n_{f}}{9}\right\} \left(\frac{\alpha_{s}}{2\pi}\right)^{2} + \cdots,$$

$$A(\alpha_{\rm s}) = 2 C_{\rm F} \frac{\alpha_{\rm s}}{2\pi} + 2 C_{\rm F} \left\{ C_{\rm A} \left[\frac{61}{18} - \frac{\pi}{6} \right] - \frac{8n_{\rm f}}{9} \right\} \left(\frac{\alpha_{\rm s}}{2\pi} \right) + \cdots ,$$

$$B(\alpha_{\rm s}) = -4 \frac{\alpha_{\rm s}}{2\pi} + \left[-\frac{197}{3} + \frac{34n_{\rm f}}{9} + \frac{20\pi^2}{3} - \frac{8n_{\rm f}\pi^2}{27} + \frac{8\zeta(3)}{3} \right] \left(\frac{\alpha_{\rm s}}{2\pi} \right)^2 + \cdots ,$$

$$C_{a'a}(z, \alpha_{\rm s}) = \delta_{a'a}\delta(1-z) + \frac{\alpha_{\rm s}}{2\pi} \left[\delta_{a'a} \left\{ \frac{4}{3} \left(1-z \right) + \frac{2}{3} \delta(1-z) \left(\pi^2 - 8 \right) \right\} + \delta_{ag} z(1-z) \right]$$

$$x_{\rm A} = \sqrt{\frac{M^2}{s}} e^Y$$
 $x_{\rm B} = \sqrt{\frac{M^2}{s}} e^{-Y}$ $C = 2e^{-\gamma_E}$

Analytical approach

- From Nagy and me (2010).
- Start with the Fourier transform of the cross section.

$$(\boldsymbol{b}, Y | \rho(t)) = \int \frac{d\boldsymbol{p}_{\perp}}{(2\pi)^2} e^{i\boldsymbol{p}_{\perp} \cdot \boldsymbol{b}} (\boldsymbol{p}_{\perp}, Y | \rho(t))$$

• Use the shower evolution equation.

$$\frac{d}{dt}(\mathbf{b}, Y | \rho(t)) = (\mathbf{b}, Y | \mathcal{H}_{I}(t) - \mathcal{V}(t) | \rho(t))$$

• Use what we know about the operators involved.

Result

$$egin{align} rac{d\sigma}{dm{p}_{\perp}dY} &pprox \int rac{d^2m{b}}{(2\pi)^2} \, e^{\mathrm{i}m{b}\cdotm{p}_{\perp}} & m{\mathrm{Exponentia}} \ & imes \sum_{a,b} \int_{x_\mathrm{a}}^1 rac{d\eta_\mathrm{a}}{\eta_\mathrm{a}} \int_{x_\mathrm{b}}^1 rac{d\eta_\mathrm{b}}{\eta_\mathrm{b}} \, f_{a/A}ig(\eta_\mathrm{a},C^2/m{b}^2ig) \, f_{b/B}ig(\eta_\mathrm{b},C^2/m{b}^2ig) \ & \int_{x_\mathrm{b}}^{M^2} dm{k}_\perp^2 \, \left[\left(M^2
ight) + \left(M^2
ight) \right] \, dm{k}_\perp^2 \, \left[\left(M^2
ight) + \left(M^2
ight) \right] \, dm{k}_\perp^2 \, \left[\left(M^2
ight) + \left(M^2
ight) +$$

$$\times \exp\left(-\int_{C^{2}/\boldsymbol{b}^{2}}^{M^{2}} \frac{d\boldsymbol{k}_{\perp}^{2}}{\boldsymbol{k}_{\perp}^{2}} \left[\boldsymbol{A}(\alpha_{s}(\boldsymbol{k}_{\perp}^{2})) \log\left(\frac{M^{2}}{\boldsymbol{k}_{\perp}^{2}}\right) + \boldsymbol{B}(\alpha_{s}(\boldsymbol{k}_{\perp}^{2}))\right]\right)$$

$$\times \sum H_{a'b'}^{(0)} C_{a'a}\left(\frac{x_{a}}{n_{a}}, \alpha_{s}\left(\frac{C^{2}}{\boldsymbol{b}^{2}}\right)\right) C_{b'b}\left(\frac{x_{b}}{n_{b}}, \alpha_{s}\left(\frac{C^{2}}{\boldsymbol{b}^{2}}\right)\right) .$$

$$A(\alpha_{\rm s}) = 2 C_{\rm F} \frac{\alpha_{\rm s}}{2\pi} + 2 C_{\rm F} \left\{ C_{\rm A} \left[\frac{67}{18} - \frac{\pi^2}{6} \right] - \frac{5 n_{\rm f}}{9} \right\} \left(\frac{\alpha_{\rm s}}{2\pi} \right)^2 + \cdots ,$$

$$B(\alpha_{\rm s}) = -4 \frac{\alpha_{\rm s}}{2\pi} + \left[-\frac{197}{3} + \frac{24 n_{\rm c}}{9} + \frac{20 \pi^2}{3} + \frac{8 n_{\rm f} \pi^2}{27} + \frac{8 \zeta(2)}{3} \right] \left(\frac{\alpha_{\rm s}}{2\pi} \right)^2 + \cdots ,$$

$$C_{a'a}(z, \alpha_{\rm s}) = \delta_{a'a} \delta(1 - z) + \frac{\alpha_{\rm s}}{2\pi} \left[\delta_{a'a} \left\{ \frac{4}{2} (1 - z) + \frac{2}{3} (1 - z) + \frac{2}{3} (1 - z) \right\} + \delta_{ag} z (1 - z) \right]$$

Numerical approach with Deductor

- Look at distribution of $P_{\rm T}$ of e^+e^- pairs with M > 400 GeV.
- $\int_0^{100 \text{ GeV}} dp_{\text{T}} \rho(p_{\text{T}}) = 1.$
- A parton shower should get this right except for soft effects at $P_{\rm T} < 10$ GeV.

- We compare Deductor, Pythia, and the analytic log summation in ResBos.
- Deductor appears to do well [Nagy and me (2014)].

Threshold logarithms

• Consider the Drell-Yan process with dimuon rapidity Y and mass M.

• There are logarithms of (1-z) where

$$\hat{\eta} = \frac{\eta}{z}$$

• There is a large literature on summing these logarithms starting with Sterman (1987).

- These "threshold logs" are important when the parton distribution functions are steeply falling.
- They affect the cross section

$$\frac{d\sigma}{dM^2 dY}$$

• A typical parton shower fixes the cross section at the Born cross section.

• Therefore the threshold logarithms are not included.

Including threshold logs

- A parton shower can sum logarithms if you let it.
- We propose to do that, at a leading log level.
- This is work in progress, not yet implemented in Deductor.
- I can show you the main idea.

What not to do

• The shower state evolves in shower time.

$$\begin{aligned} \left| \rho(t) \right) &= \mathcal{U}_{\mathcal{V}}(t,t') \middle| \rho(t') \right) \\ \frac{d}{dt} \, \mathcal{U}_{\mathcal{V}}(t,t') &= \left[\mathcal{H}_{\mathrm{I}}(t) - \mathcal{V}(t) \right] \mathcal{U}_{\mathcal{V}}(t,t') \\ \mathcal{H}_{\mathrm{I}}(t) &= \text{splitting operator} \end{aligned}$$

$$\mathcal{V}(t) = \text{no-splitting operator}$$

• We calculate V(t) from $\mathcal{H}_I(t)$ so that the inclusive cross section does not change during the shower.

What to do

• The shower state evolves in shower time.

$$|\rho(t)\rangle = \mathcal{U}_{\mathcal{A}}(t, t')|\rho(t')\rangle$$

$$\frac{d}{dt} \mathcal{U}_{\mathcal{A}}(t, t') = [\mathcal{H}_{\mathrm{I}}(t) - \mathcal{A}(t)] \mathcal{U}_{\mathcal{A}}(t, t')$$

$$\mathcal{H}_{\rm I}(t) = {
m splitting operator}$$

$$A(t)$$
 = virtual splitting operator

• We simply calculate A(t) from one loop virtual graphs plus parton evolution.

What happens

$$\mathcal{U}_{\mathcal{A}}(t,t_0) = \mathcal{N}_{\mathcal{A}}(t,t_0) + \int_{t_0}^t d\tau \ \mathcal{U}_{\mathcal{A}}(t,\tau) \mathcal{H}_I(\tau) \mathcal{N}_{\mathcal{A}}(\tau,t_0)$$

$$\mathcal{N}_{\mathcal{A}}(t_2, t_1) = \mathbb{T} \exp \left[\int_{t_1}^{t_2} d\tau \left[-\mathcal{V}(\tau) + (\mathcal{V}(\tau) - \mathcal{A}(\tau)) \right] \right]$$

- Within the LC+ approximation, the operators commute.
- There is an extra factor

$$\exp\left[\int_{t_1}^{t_2} d\tau \, \left(\mathcal{V}(\tau) - \mathcal{A}(\tau)\right)\right]$$

that changes the cross section.

The most important term

- Look at the Drell-Yan process.
- Look at the factor for line "a" just after the hard interaction.
- Assume that no real gluons have been emitted yet.

• Use y = dimensionless virtuality variable (with $y \ll 1$) and z = momentum fraction.

- Result: almost everything cancels.
- Two terms do not quite cancel.

$$\begin{aligned} & [\mathcal{V}_{\mathbf{a}}(t) - \mathcal{A}_{\mathbf{a}}(t)] | \{p, f, s', c', s, c\}_{m} \} = \\ & \left\{ \int_{0}^{1/(1+y)} \frac{dz}{z} \sum_{\hat{a}} \frac{\alpha_{s}}{2\pi} \left(\frac{f_{\hat{a}/A}(\eta_{\mathbf{a}}/z, Q^{2}y/z)}{f_{a/A}(\eta_{\mathbf{a}}, Q^{2}y)} P_{a\hat{a}}(z) - \delta_{a\hat{a}} \frac{2C_{a}z}{1-z} \right) [1 \otimes 1] \\ & - \int_{0}^{1} \frac{dz}{z} \sum_{\hat{a}} \frac{\alpha_{s}}{2\pi} \left(\frac{f_{\hat{a}/A}(\eta_{\mathbf{a}}/z, Q^{2}y/z)}{f_{a/A}(\eta_{\mathbf{a}}, Q^{2}y)} P_{a\hat{a}}(z) - \delta_{a\hat{a}} \frac{2C_{a}z}{1-z} \right) [1 \otimes 1] \\ & + \cdots \right\} | \{p, f, s', c', s, c\}_{m}) \end{aligned}$$

- z < 1/(1+y) comes from splitting kinematics.
- z < 1 comes from parton evolution.

• This leaves an integration over a tiny range of z:

$$\begin{aligned} & [\mathcal{V}_{a}(t) - \mathcal{A}_{a}(t)] | \{p, f, s', c', s, c\}_{m}) = \\ & \left\{ \int_{1/(1+y)}^{1} \frac{dz}{z} \sum_{\hat{a}} \frac{\alpha_{s}}{2\pi} \left(\delta_{a\hat{a}} \frac{2C_{a}z}{1-z} - \frac{f_{\hat{a}/A}(\eta_{a}/z, Q^{2}y/z)}{f_{a/A}(\eta_{a}, Q^{2}y)} P_{a\hat{a}}(z) \right) [1 \otimes 1] \right. \\ & \left. + \cdots \right\} | \{p, f, s', c', s, c\}_{m}) \end{aligned}$$

• for $(1-z) < y/(1+y) \ll 1$ use $z \approx 1$ and

$$P_{a\hat{a}}(z) \approx \delta_{a\hat{a}} \frac{2C_a}{1-z}$$

• This gives

$$\begin{aligned} & [\mathcal{V}_{a}(t) - \mathcal{A}_{a}(t)] | \{p, f, s', c', s, c\}_{m}) = \\ & \left\{ \int_{1/(1+y)}^{1} dz \, \frac{\alpha_{s}}{2\pi} \, \frac{2C_{a}}{1-z} \left(1 - \frac{f_{a/A}(\eta_{a}/z, Q^{2}y)}{zf_{a/A}(\eta_{a}, Q^{2}y)} \right) [1 \otimes 1] \right. \\ & \left. + \cdots \right\} | \{p, f, s', c', s, c\}_{m}) \end{aligned}$$

- The 1/(1-z) factor creates the "threshold log."
- But the parton factor contains a factor (1-z) so there is no actual log.
- For $y \ll 1$, this contribution is suppressed by a factor of y.
- But, the parton factor can be large, so we keep this.

- Look at the production of $\mu^+\mu^-$ with a large mass M.
- We should multiply the Born cross section by a factor

$$Z_{\rm a}Z_{\rm b}K$$

where Z_a and Z_b (not discussed here) convert the $\overline{\rm MS}$ parton distributions to virtuality based parton distributions and

$$K = \exp\left(\kappa_{\rm a}(a) + \kappa_{\rm b}(\bar{a})\right)$$

- K is the "extra" Sudakov factor for the first step in the shower.
- For the moment, assume that there are no more steps.

• Then K is given by

$$K = \exp\left(\kappa_{\rm a}(a) + \kappa_{\rm b}(\bar{a})\right)$$

$$\kappa_{a}(a) = \int_{0}^{1} \frac{dy}{y} \int_{1/(1+y)}^{1} dz \, \frac{\alpha_{s}(y(1-z)M^{2})}{2\pi} \times \left[1 - \frac{f_{a/A}(\eta_{a}/z, yM^{2})}{zf_{a/A}(\eta_{a}, yM^{2})}\right] \times \frac{2C_{F}}{1-z} \, \theta(m_{\perp}^{2} < y(1-z)M^{2})$$

• $m_{\perp} = 1 \text{ GeV}$ provides an infrared cutoff.

Numerical result

- Examine $p + p \rightarrow \mu^+ + \mu^- + X$ at $\sqrt{s} = 14$ TeV.
- Plot $Z_a Z_b K$ vs. the mass M of the dimuon at Y = 0.
- Compare to SCET formulas from Becher, Neubert, & Xu (2008).
- For SCET, I use the "LO" result with a range of scale choices.

Conclusion on threshold logs

- We find simple and intuitive leading order formulas.
- This is in the context of a leading order parton shower not "NLO" or "NNLO."
- The numerical results for the main factors seem sensible.
- We expect to implement this as part of Deductor.
- The summation will apply to all hard processes.
- It remains to be seen what happens.

General conclusion

• Parton shower event generators can sum logarithms.

• They are leading order, so not as precise as SCET.

• But they are useful because they are more general.

• Summing threshold logs with a parton shower seems possible.