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The prequel

e Parton shower event generators are an important
tool for physics.

e Zoltan Nagy (DESY) and I have a parton shower event
generator, DEDUCTOR.



DEDUCTOR

e http://pages.uoregon.edu/soper/deductor/

e Dipole shower.

e In principle, uses quantum density matrix in color & spin.
e L.C+ approximation for color.

e Non-zero b and ¢ quark masses.

e See M. Czakon, H. B. Hartanto, M. Kraus and M. Worek
“Matching the Nagy-Soper parton shower at

next-to-leading order.”



Coming in DEDUCTOR

e Perturbative improvement to LC+ approximation.

e (Quantum spin.
e Threshold logs (this talk).

e Choices, e.g. for definition of ordering variable.

e Interface to hadronization model.



Shower evolution

e Showers develop in “shower time.”

e Hardest interactions first.
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Shower ordering variable

e Originally, PYTHIA used virtuality to order splittings.
e Now, PYTHIA and SHERPA use “kp.”

e DEDUCTOR uses A,

2 _ 2
A7 = bi = M Qs  (final state)
2pi - Qo
p2 — m2| g
A2 _ PP T : (initial state)
© o 2mipa - Qo
where

(Do 1s a fixed timelike vector;
pa 18 the incoming hadron momentum;
n; 1s the parton momentum fraction.



Contrast with SCET

e SCET divides gluon emissions into hard, collinear to
hadron A, collinear to hadron B, and soft.

e Fach region gets its own special treatment.

e Since the boundaries between regions should not
matter, we get differential equations to solve.



e In a parton shower, we have just
two regions: hard and 50Ty NN :
everything else. | ‘

e We solve a differential equation
in the hardness variable that sets
the boundary between hard and
everything else.

e We count on having a good
approximation to sort out
collinear regions from the soft 0
region.




Evolution equation

The shower state evolves in shower time.

p(t) =Un(t.t)|p(t))

%Uv(t,t/) = [Hi(t) = V(O (. 1)

Hi(t) = splitting operator

V(t) = no-splitting operator



An obvious question

e Is this going to sum large logarithms?
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Logarithms of p,

e Consider A+ B — 7+ X

e Measure the p, of the Z-boson for p? <« Mz,

do
dpJ_dY

e There are large logarithms log(MZ% /p? ).

e We know how to sum these in QCD.
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The QCD answer,

/ d2b
dpJ_dY
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Analytical approach

e From Nagy and me (2010).

e Start with the Fourier transtorm of the cross section.

(baY\ﬂ(ﬂ):/dm P (pL, Y p(t)

(2m)°
e Use the shower evolution equation.
d
- (b, Y[p(t)) = (b, Y [Hi(t) = V(£)|p(1))

e Use what we know about the operators involved.
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Result
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Numerical approach with

Deductor
e ook at distribution of Pr of T ————— :
ete” pairs with M > 400 GeV. 004 e bveron :
100 GeV
® 0 de,O(pT) = 1.

e A parton shower should get
this right except for soft effects
at Pr < 10 GeV.

e We compare DEDUCTOR, PYTHIA, and the analytic log
summation in RESBOS.

e DEDUCTOR appears to do well [Nagy and me (2014)].



Threshold logarithms




e Consider the Drell-Yan process with dimuon rapidity Y
and mass M.

Ta

o

e There are logarithms of (1 — 2) where

.7
77__
2

e There is a large literature on summing these logarithms
starting with Sterman (1987).
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e These “threshold logs” are important when the parton
distribution functions are steeply falling.

e They affect the cross section

do
dM?dY

e A typical parton shower fixes the cross section at the
Born cross section.

e Therefore the threshold logarithms are not included.

I8



Including threshold logs

e A parton shower can sum logarithms if you let it.
e We propose to do that, at a leading log level.

e This is work in progress, not yet implemented in DEDUCTOR.

e | can show you the main idea.
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What not to do

e The shower state evolves in shower time.

(1)) = U(t,2)] (1)) 0NN (e
d T
o Uy(t,t') = [Hi(t) — V(t)Up(t, 1) K///%%%
Hi(t) = splitting operator %\\@W
%%%%%

V(t) = no-splitting operator _

~ (

e We calculate V(t) from H () so that the inclusive
cross section does not change during the shower.

20



What to do

e The shower state evolves 1n shower time.

p(t) =Ua(t,t)|p(t")) () [ “ﬁ&@f
;. / o,
o UL, ") = [Hi(t) — A(L)[UAa(t, t)

Hi(t) = splitting operator

A(t) = virtual splitting operator *Z

e We simply calculate A(t) from one loop virtual graphs
plus parton evolution.



What happens

Ut 10) = Naltst0) + [ dm Ut /P INACr, )

to

Naltat2) = Texp | [ [=9(7) + V() — AG))]

| J 11

e Within the LC+ approximation, the operators commute.

e There is an extra factor

exp | / “dr V(1) — A7)

L J 11

that changes the cross section.




The most important term

e LLook at the Drell-Yan process.

e Look at the factor for line “a” just after the hard interaction.

e Assume that no real gluons have been emitted yet.
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e Use y = dimensionless virtuality variable (with y < 1)

and z = momentum fraction.
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e Result: almost everything cancels.

e T'wo terms do not quite cancel.

Va(t) — Aa@®)]|{p, [, 8", s,¢hm) =

1 A+Y) g, fasa(na/z,Q%*y/z) 2C, 2
s o o )

fa/A(naa QZ )

dz fa/A na/zaQ y/Z) . 2042
/ Z Z ( fasa(Ma, Q4Y) Foalz) =0

+ - }{pa f7 Slaclvsac}m)

e 2 < 1/(1+ y) comes from splitting kinematics.

e z < 1 comes from parton evolution.
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e This leaves an integration over a tiny range of z:

[Va(t) — Aa(t)] Hpa /5 5/7 Clv S C}m) —

/1 dz Qg <5 20, % f&/A(Ua/Z, QZ?J/Z)
- =~ aa 9
1/(1+vy) % p 2T 1 — 2 fa/A(naa Q y)

Pad(z)> 1® 1]

T }{p,f,S/,C/,S,C}m)

o for (1-2)<y/(l+y)<1usez~1and
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e This gives
[Va(t) _ Aa(t)H{pa /5 Slvclvsac}m) —
{/1 dz 2o 2Ce (1 f“/A("a/Z’sz)>[1®1]

<
/(+y) 2T 1=z 2 fasa(Nas Q%)

T }{p) f7 3/76’,570}m)

e The 1/(1 — 2) factor creates the “threshold log.”

e But the parton factor contains a factor (1 — z)
so there is no actual log.

e For y < 1, this contribution is suppressed by a factor of y.

e But, the parton factor can be large, so we keep this.
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e Look at the production of u*p~ with a large mass M.

e We should multiply the Born cross section by a factor

Lol K
where Z, and Z;, (not discussed here) convert the MS parton

distributions to virtuality based parton distributions and

K = exp (ka(a) + kp(a))

)

e K is the “extra” Sudakov factor for the () ()
first step in the shower.

-

e For the moment, assume that there are
no more steps.
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e Then K is given by

K = exp (ka(a) + kp(a))

/ dy / (y(1 — z)M?)
/<1+y> 27

« fa/A(na/Z yMQ)
| Zfa/A(naayM2)
2
o ?Fz O(ms < y(l —2)M?)

e m; = 1 GeV provides an infrared cutoft.
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Numerical result

e Examinep+p— " +u + X
at /s = 14 TeV.

e Plot Z,/Z1, K vs. the mass M
of the dimuon at Y = 0.

e Compare to SCET formulas from
Becher, Neubert, & Xu (2008).

e For SCET, I use the “LO” result
with a range of scale choices.

Z ln K

1.9
1.8F
17k
1.6F
1.5F
1.4}
1.3F
1.2}
1.1}

this talk
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Conclusion on threshold logs

e We find simple and intuitive leading order formulas.

e This is in the context of a leading order parton shower
not “NLO” or “NNLQO.”

e The numerical results for the main factors seem sensible.

e We expect to implement this as A NN O &@
part of DEDUCTOR. JNEse

e The summation will apply to all = N

hard processes.
\_/ \Z N \_/

e It remains to be seen what happens.
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(szeneral conclusion

e Parton shower event generators can sum logarithms.
e They are leading order, so not as precise as SCET.
e But they are usetul because they are more general.

e Summing threshold logs with a parton shower seems possible.
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