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Resummed Cross Sections

resummation predicts two quantities:

d�

d⌧
(µi)

⌃(µi, ⌧)

: spectrum

: cumulant

⌃(µi, ⌧) =

Z ⌧

0
d⌧ 0

d�

d⌧ 0

µi = µi(⌧)
RGE, fixed order matching implemented 
by profile scales: 

profile scale variations used 
to assess scale uncertainties

soft profile

I will take τ to be thrust for this talk, 
but generically it can be any  

jet resolution variable
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simple problem: typically, 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Two Paths to the Spectrum
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in terms of full/partial derivatives:
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Integrated spectrum gets 
cumulant observables wrong:

• cumulant beyond small τ

• inclusive cross section

• uncertainties

(⌧ ! ⌧
max

)

cumulant (free scales) → spectrum (free scales) → spectrum (profiles)

cumulant (free scales) →    cumulant (profiles)    → spectrum (profiles)



Accuracy of Each Resummed Cross Section
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Connection to Known Problems

Spectra with the wrong inclusive cross section is a well-known problem
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FIG. 10. Total hadronic cross section obtained from integrating the resummed cross section. The top two panels show the
prediction for rs = 1 and rs = 2 for C-parameter, respectively. Likewise, the bottom two panels show the thrust results. Green
squares correspond to the prediction with log-resummation and the power correction in the MS scheme, whereas red triangles
have log-resummation and the power correction in the Rgap scheme. The blue points correspond to the fixed-order prediction,
and the blue line shows the highest order FO prediction.
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FIG. 11. Components of the C-parameter cross section with
resummation at N3LL�+O(�3

s)+�1(R,µ) with �1(R�, µ�) =
0.33GeV and �s(mZ) = 0.1141.

that we draw below.) In Fig. 8, we show the perturbative
C-parameter cross section (upper two rows) and thrust

cross section (lower two rows) with a scan over theory
parameters (without including �1 or the shape function)
for both rs = 1 (first respective row) and rs = 2 (sec-
ond respective row). Additionally, we plot with di⇥er-
ent values of Q, using Q = 40GeV in the first column,
Q = 91.2GeV in the second column and Q = 200GeV
in the third column. The bands here correspond to a
theory parameter scan with 500 random points taken
from Tabs. II and III. We conclude from these plots that
rs = 2 has better convergence between di⇥erent orders
than rs = 1. For all of the values of Q, we can see that in
the slope 1 case, the N2LL� band lies near the outside of
the edge of the NLL� band, while in the slope 2 plots, the
scan for N2LL� is entirely contained within the scan for
NLL�. A similar picture can be seen for the transition
from N2LL� to N3LL�. This leads us to the conclusion
that the resummed cross section prefers rs = 2 profiles
which we choose as our central value for the remainder
of the analysis. (In the thrust analysis of Ref. [19], the
profiles did not include an independent slope parameter,
but in the resummation region their profiles are closer to
taking rs = 2 than rs = 1.)

At the highest order, N3LL� + O(�3
s), the choice of

Hoang, Kolodrubetz, 
Mateu, Stewart 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Intimately connected with the fact that the derivative of the cumulant  
has poor behavior in the transition/tail region 15
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FIG. 7: Components of the pure QCD cross section. Here
Ω1 = 0.35 GeV and αs(mZ) = 0.114.

µI plays a role very similar to the scale R in the R-
gap scheme. These logarithms are the analogs of LR in
Eq. (38) and, since µ ∝ Q these logarithms also become
large. In the effective coupling model an appropriate re-
summation formalism for large logs in the subtractions
remains an open question.
In Fig. 7 we plot the absolute value of four components

of our cross section for our complete QCD result at N3LL′

order in the R-gap scheme at Q = mZ . The cross sec-
tion components include the singular terms (solid blue),
nonsingular terms (dashed blue), and separately the con-
tributions from terms that involve the subtraction coef-
ficients δi, for both singular subtractions (solid red) and
nonsingular subtractions (dashed red). The sum of these
four components gives the total cross section (solid black
line). The subtraction components are a small part of
the cross section in the tail region, but have an impact
at the level of precision obtained in our computation. In
the peak region at very small τ the solid red singular
subtraction grows to be the same size as the solid blue
singular term, and is responsible for yielding a smooth
positive definite total cross section. In both the peak
and tail regions the singular cross section dominates over
the nonsingular cross section. But as we approach the
threshold τ ∼ 1/3 for the far-tail region they appear with
opposite signs and largely cancel. This is clear from the
figure where individually the singular and nonsingular
lines are larger than the total cross section in this region.
The same cancellation occurs for the singular subtraction
and nonsingular subtraction terms.

G. Bottom Mass Effects

In this work we implement bottom mass effects
using the SCET factorization framework for massive
quarks [14, 41]. We include mb-dependence in the kine-

matics, which starts at tree level, and in the O(αs) cor-
rections in the partonic singular and nonsingular distri-
butions. We also account for the resummation of large
logs and for hadronization effects in the mb-dependent
terms. The mass dependent factorization theorem im-
plies that the renormalization group summation of loga-
rithms is identical to the one for massless quarks, and
that all power corrections of type 1 from Eq. (9) are
described by the nonperturbative soft function Smod

τ al-
ready defined for the massless case [14, 41]. We have
already indicated this with the convolution ∆dσ̂b/dτ ⊗
Smod
τ shown in Eq. (4). Since for the numerical analysis

in this work we fit to data in the tail region, where Qτ >
6 GeV, and since the massive quark thrust factorization
theorem implies for the soft scale µS ∼ Qτ > 6 GeV,
we do not have to account for any flavor threshold in
the renormalization group evolution and can always use
nf = 5. The mass dependent factorization theorem fur-
ther implies that the only nontrivial mb-dependence in
the singular distribution arises in the thrust jet function.
Thus the jet scale µJ ∼ Q

√
τ ≫ mb for the region of our

fit and we use the MS bottom mass mb(µJ ) to parame-
terize the mb corrections with m̄b(m̄b) = 4.2GeV as our
input value. Using the MS mass rather than the pole
mass avoids the appearance of large higher order effects
related to the O(ΛQCD) pole mass renormalon.
We implement the partonic bottom mass corrections

as an additive term to the massless partonic N3LL′ cross
section. These corrections come from the production of
bottom quarks by the virtual γ or Z,

∆dσ̂b

dτ
=

dσ̂b

dτ
−

dσ̂m̄b=0
b

dτ
, (42)

where both dσ̂b/dτ and dσ̂m̄b=0
b /dτ are computed at

NNLL. Because the effect of m̄b ̸= 0 in ∆dσ̂b/dτ is ex-
pected to be a percent level correction to the tail cross
section, we anticipate that the NNLL level of precision
suffices. (This is also justified a posteriori by the rela-
tively small effect of themb corrections on our fit results.)
An important aspect in the discussion of the finite

quark mass effects is in which way hadron and heavy
quark masses need to be accounted for in the definition
of thrust in Eq. (1). In the experimental analyses Monte
Carlo generators are used to convert the actual measure-
ments to the momentum variables needed to compute τ ,
and this conversion depends on hadron masses. Since the
final state stable hadrons are light, these effects are re-
lated to nonperturbative physics. Theoretically they are
therefore implicitly encoded within our fit of the nonper-
turbative corrections. In the partonic theoretical com-
putation light hadron masses are neglected in the com-
putation of the τ distribution, and it is consistent to set∑

i |p⃗i| = Q in the denominator of Eq. (1).
To understand how the heavy quark masses affect the

definition of thrust in Eq. (1) we recall that the partonic
computation relies on the inclusive nature of the mea-
surements and that, experimentally, only light and long-
lived hadrons reach the detectors and are accounted for

Abbate, Hoang, Fickinger, 
Mateu, Stewart 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FIG. 10. Total hadronic cross section obtained from integrating the resummed cross section. The top two panels show the
prediction for rs = 1 and rs = 2 for C-parameter, respectively. Likewise, the bottom two panels show the thrust results. Green
squares correspond to the prediction with log-resummation and the power correction in the MS scheme, whereas red triangles
have log-resummation and the power correction in the Rgap scheme. The blue points correspond to the fixed-order prediction,
and the blue line shows the highest order FO prediction.
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FIG. 11. Components of the C-parameter cross section with
resummation at N3LL0+O(↵3
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that we draw below.) In Fig. 8, we show the perturbative
C-parameter cross section (upper two rows) and thrust

cross section (lower two rows) with a scan over theory
parameters (without including ⌦1 or the shape function)
for both rs = 1 (first respective row) and rs = 2 (sec-
ond respective row). Additionally, we plot with di↵er-
ent values of Q, using Q = 40GeV in the first column,
Q = 91.2GeV in the second column and Q = 200GeV
in the third column. The bands here correspond to a
theory parameter scan with 500 random points taken
from Tabs. II and III. We conclude from these plots that
rs = 2 has better convergence between di↵erent orders
than rs = 1. For all of the values of Q, we can see that in
the slope 1 case, the N2LL0 band lies near the outside of
the edge of the NLL0 band, while in the slope 2 plots, the
scan for N2LL0 is entirely contained within the scan for
NLL0. A similar picture can be seen for the transition
from N2LL0 to N3LL0. This leads us to the conclusion
that the resummed cross section prefers rs = 2 profiles
which we choose as our central value for the remainder
of the analysis. (In the thrust analysis of Ref. [19], the
profiles did not include an independent slope parameter,
but in the resummation region their profiles are closer to
taking rs = 2 than rs = 1.)

At the highest order, N3LL0 + O(↵3
s), the choice of



Connection to Known Problems

Want to associate scale variation to specific components of uncertainty

Cy = ��y
��T

y

C = Cy +
X

i<j

Cij
cut

Cij
cut =

�
�ij

cut

�2
✓

1 �1
�1 1

◆

ij

general covariance matrix decomposition:

fully correlated anti-correlated 2-by-2 blocks

�ij
cut

�i
y : yield uncertainty for bin i 
         fully correlated with total rate

: migration uncertainty  
 between bins i and j

consider the cross section for N jet bins 
e.g. 2-jet and ≥3-jet bins for thrust



Connection to Known Problems
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general covariance matrix decomposition:

fully correlated anti-correlated 2-by-2 blocks

�ij
cut
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y : yield uncertainty for bin i 
         fully correlated with total rate

: migration uncertainty  
 between bins i and j

consider the cross section for N jet bins 
e.g. 2-jet and ≥3-jet bins for thrust

µJ , µS

soft, jet scale variations should not change the inclusive cross section:

variations map directly onto migration uncertainties  
iff they leave the inclusive cross section unchanged

this is not the case for standard profile variations 



The Main Idea

Define a resummation method with two novel features:

1. Add higher order terms to the spectrum that bring the  
inclusive cross section close to the fixed order value


- must maintain a sensible distribution in the tail region


- must be consistent across fixed order scales (convergence)


2. Use an algorithm to identify families of soft and jet profiles that 
preserve the total cross section


- use these families to determine the soft, jet scale uncertainties


- our algorithm can identify arbitrarily many profiles preserving 
the total cross section, and we can test its robustness
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Step 1

1. Add higher order terms to the spectrum that bring the  
inclusive cross section close to the fixed order value
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d⇤
(µ̃i(⇤))

i
�(⇤)

Use the fact that the cumulant derivative / spectrum difference is higher order:

use a special smooth profile  
so that               is smoothdµ̃i/d�

suppression factor to 
reduce effect in the tail

add
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use a special smooth profile  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suppression factor to 
reduce effect in the tail

add

peak transition
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Step 2

2. Use an algorithm to identify families of soft and jet profiles that 
preserve the total cross section

0.0 0.1 0.2 0.3 0.40.0

0.2

0.4

0.6

0.8

1.0

⇥

� central

scale

cross section 
preserving variation

we will attempt to fill the 
standard scale variation band 
with profiles that all preserve 
the inclusive cross section

preserve reliable  
point-by-point uncertainties  

and  
capture long-distance correlations



Step 2

2. Use an algorithm to identify families of soft and jet profiles that 
preserve the total cross section

This can be cast as a math problem: find μ(τ) such that

�incl =

Z ⌧
max

0
d⇥

d�

d⇥
(µ(⇥), ⇥)

subject to some simple constraints on μ  
(monotonicity, smoothness, fixed shape near endpoints)

Quiz: what is Bolzano’s Theorem?

This is a fairly generic problem,  
and we have devised a generic algorithm to solve it



The Intermediate Value Theorem 
(Bolzano’s Theorem)

for continuous functions:

Bernard Bolzano

(1781-1848)

a b
f

f(a) < 0 < f(b) ) 9 c 2 [a, b] with f(c) = 0

At any time, on any great circle,  
there are two points on opposite sides 
of the Earth with the same temperature

fun application:

T (p)� T (p̄)



Extensions of Bolzano’s Theorem

f(a) < 0 < f(b) ) 9 c 2 [a, b] with f(c) = 0

a b

fup

f
down

a b
f

c

where f⇤ = a⇤fup + (1� a⇤)fdown

, a⇤ =
�
R b
a f

down

R b
a (fup � f

down

)

Z b

a
f
down

< 0 <

Z b

a
f
up

)
Z b

a
f⇤ = 0

8x, f
down

(x)  f⇤(x)  f

up

(x) or f

down

(x) � f⇤(x) � f

up

(x)

f⇤

standard “single point” case

“line” case

find a point where a function vanishes

find a function with a given integral



Z
dxR[g

down

(x), x] = A

down

< A

Z
dxR[gup(x), x] = Aup > A

Z
dxR[g⇤(x), x] = A

Extensions of Bolzano’s Theorem

Z
dxR[g(x), x] = A

suppose we want to find g(x) satisfying

where A is a non-extremal constant

take two g satisfying

g⇤ = a⇤gup + (1� a⇤)gdown

, a⇤ 2 [0, 1]

then there is some g such that

for instance

8x, g
down

(x)  g⇤(x)  g

up

(x) or g

down

(x) � g⇤(x) � g

up

(x)

in fact, there are infinitely many g✻ such that

“parametric line” case (our case)
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The Bolzano Algorithm

1. Identify a set of candidate profiles μ


2. Separate candidate profiles by whether or not they give an inclusive cross section 
less than or greater than the true inclusive cross section 

3. On every pair of “down” and “up” profiles, find a✻ such that 
 
 
has the correct inclusive cross section


4. Select all μ✻ satisfying desired properties:

- Monotonicity

- Smoothness

-  

µ⇤ = a⇤µup

+ (1� a⇤)µdown

{µ} � {µ
up

}, {µ
down

}

8� , µvary

down

(�)  µ⇤(�)  µvary

up

(�)

can replace step 3 with a spectrum-space solution: N candidate profiles 
give ~N2/4 solutions

“up” profile

cross section 
preserving variation

“down” 
profile

µ⇤ = ��1

⇥
�⇤ = b⇤�(µup

) + (1� b⇤)�(µdown

)
⇤



Profiles: Algorithm and Solutions
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�������� ���� ������ �������

up

down
Z

d⌧
d�

d⌧
(µi) < �incl

Z
d⌧

d�

d⌧
(µi) > �incl

start with random profiles that  
fill out the standard uncertainty band

divide into groups by 
the total cross section

200 profiles

124 profiles

76 profiles

fix the shapes in the  
small and large thrust regions



Profiles: Algorithm and Solutions
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Z
d⌧

d�

d⌧
(µi) < �incl

Z
d⌧

d�

d⌧
(µi) > �incl

run Bolzano algorithm 
to find solutions

124 profiles

76 profiles
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���� ������ ���������� ���′+���

9424 profiles

do the same thing for 
the jet profiles



Comparison between Resummation Methods
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Comparison between Resummation Methods
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Convergence

slight non-convergence in the peak region  
exists also in the standard resummed spectrum


(artifact of pinching in resummation scale dependence)

peak transition



Cumulant
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standard  
cumulant/spectrum 

resummation

“σ-improved”  
spectrum 

resummation



Cumulant
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Cumulant
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Cumulant
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the “σ-improved” thrust spectrum has 
both inclusive and exclusive accuracy!



Correlations

d�

d⌧
(µi)�

d�

d⌧
(µcentral)

can study correlations across τ:

S =

��� ��� ��� ��� ��� ���-���

-���

���

���

���

“gap” regions hard to fill,  
require precise correlations  

at small and large τ



Correlations

d�

d⌧
(µi)�

d�

d⌧
(µcentral)

can study correlations across τ:

S =

��� ��� ��� ��� ��� ���-���

-���

���

���

���

courtesy Tom Melia



Two-Point Correlations

d�

d⌧
(µi)�

d�

d⌧
(µcentral)

can study correlations across τ:
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profile
default region

spectrum

τ1 = 0.03, τ2 = 0.12
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Two-Point Correlations

d�

d⌧
(µi)�

d�

d⌧
(µcentral)

can study correlations across τ:

profile
default region

spectrum

τ1 = 0.03, τ2 = 0.06
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Two-Point Correlations

d�

d⌧
(µi)�

d�

d⌧
(µcentral)

can study correlations across τ:

profile
default region

spectrum

τ1 = 0.03, τ2 = 0.3



Future Directions

C-parameter in e+e-

13

large logarithms, these scales must satisfy certain con-
straints in the di⇥erent C regions

1) nonperturbative: C <⇤ 3⌅
�QCD

Q

µH ⇤ Q, µJ ⇤
⇧

�QCDQ, µS⇤R⇤�QCD ,

2) resummation: 3⌅
�QCD

Q
⌅ C < 0.75 (71)

µH ⇤ Q, µJ ⇤ Q

⌃
C

6
, µS⇤R⇤QC

6
⇧ �QCD ,

3) fixed-order: C > 0.75

µH = µJ = µS = R ⇤ Q ⇧ �QCD .

In order to meet these constraints and have a continu-
ous factorization formula, we make each scale a smooth
function of C using profile functions.

When one looks at the physical C-parameter cross-
section, it is easy to identify the peak, tail, and far-tail as
distinct physical regions of the distribution. How much
of the physical peak belongs to the nonperturbative ver-
sus resummation region is in general a process dependent
statement, as is the location of the transition between
the resummation and fixed-order regions. For example,
in b ⌃ s � the entire peak is in the nonperturbative re-
gion [43], whereas for pp ⌃ H+1 gluon initiated jet with
pT ⇤ 400GeV the entire peak is in the resummation re-
gion [53]. For thrust with Q = mZ [19], and similarly
here for C-parameter with Q = mZ , the transition be-
tween the nonperturbative and resummation regions oc-
curs near the maximum of the physical peak. Note that,
despite the naming, in the nonperturbative region, where
the full form of the shape function is needed, resumma-
tion is always important. The tail for the thrust and
C-parameter distributions is located in the resummation
region, and the far-tail, which is dominated by events
with three or more jets, exists in the fixed-order region.

For the renormalization scale in the hard function, we
use

µH = eH Q , (72)

where eH is a parameter that we vary from 0.5 to 2.0 in
order to account for theory uncertainties.

The profile function for the soft scale is more compli-
cated, and we adopt the following form:

µS =

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

µ0 0 ⇥ C < t0

⇥(µ0, 0, 0,
rs µH

6 , t0, t1, C) t0 ⇥ C < t1

rs µH
C
6 t1 ⇥ C < t2

⇥(0, rs µH

6 , µH , 0, t2, ts, C) t2 ⇥ C < ts

µH ts ⇥ C < 1

. (73)

Here the 1st, 3rd, and 5th lines satisfy the three con-
straints in Eq. (71). In particular, µ0 controls the in-

cusp non-cusp matching ⇥[�s] nonsingular ⇤µ,R,r
� ⌅

LL 1 - tree 1 - - -

NLL 2 1 tree 2 - 1 -

N2LL 3 2 1 3 1 2 1

N3LL 4pade 3 2 4 2 3 2

NLL� 2 1 1 2 1 1 1

N2LL� 3 2 2 3 2 2 2

N3LL� 4pade 3 3 4 3 3 3

TABLE I. Loop corrections required for specified orders.
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FIG. 7. Solid lines are the central results for the profile
functions for the renormalization scales µH , µJ(C), µS(C)
at Q = mZ . The bands and up-down arrow indicate the
results of varying the profile parameters. The result for R(C)
is identical to µS(C) at the resolution of this figure, di�ering
only at small C. Above C = ts � 0.8 all the scales merge,
µH = µJ = µS = R.

tercept of the soft scale at C = 0. The term t0 con-
trols the boundary of the purely nonperturbative region
and the start of the transition to the resummation re-
gion, and t1 represents the end of this transition. As the
border between the nonperturbative and perturbative re-
gions is Q dependent, we actually use n0 � t0(Q/1GeV)
and n1 � t1(Q/1GeV) as the profile parameters. In the
resummation region t1 < C < t2 the parameter rs de-
termines the linear slope with which µS rises. The pa-
rameter t2 controls the border and transition between
the resummation and fixed-order regions. Finally, the
ts parameter sets the value of C where the renormal-
ization scales all join. We require both µS and its first
derivative to be continuous, and to this end we have de-
fined the function ⇥(a1, b1, a2, b2, t1, t2, t) with t1 < t2,
which smoothly connects two straight lines of the form
l1(t) = a1 + b1 t for t < t1 and l2(t) = a2 + b2 t for t > t2
at the meeting points t1 and t2. We find that a conve-
nient form for ⇥ is a piecewise function made out of two

vector boson pT distribution at LHC

persistent disagreement with data  
across theoretical predictions  

(resummation, Monte Carlo generators)


possible discrepancies in matching

ATLAS 1406.3660

Hoang, Kolodrubetz, 
Mateu, Stewart 

1411.6633

C-parameter has very 
distinctive profile scales


large non-perturbative regime, 
large canonical regime
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Conclusions

• Resummation improves the accuracy of many exclusive cross sections,  
but loses accuracy in the corresponding inclusive cross section


• We have defined a method for resummation to preserve the accuracy at both 
the inclusive and exclusive level


• An algorithm is used to find profile scales preserving the total cross section


• Rigorously connects physical components of uncertainty with parameters of 
the factorization theorem


• Studies on thrust in e+e- are very promising


• Follow-up studies for event shapes, especially hadronic collisions
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Extra Slides



Uncertainties: Fixed Order

fixed order uncertainties estimated via variation  
of renormalization, factorization scales �(µR, µF ) =

Z
�̂(µR, µF )L(µF )

consider two jet bins: Z + 0 jets, Z + ≥1 jets 
separated by a jet pT veto

�0(p
cut
T ), ��1(p

cut
T )

covariance matrix has the form:

C =

✓
�2

0y �0y��1y

�0y��1y �2
�1y

◆
+

✓
�2

cut ��2
cut

��2
cut �2

cut

◆

inclusive cross section constraint: �incl = �0 + ��1 ) �incl = �0y +��1y

C =

✓
�2

incl +�2
�1 � 2�incl��1y ��2

�1 +�incl��1y

��2
�1 +�incl��1y �2

�1

◆

2 degrees of freedom: ��1y, ��1 =
�
�2

�1y +�2
cut

�1/2

unclear how to estimate parameters from scale variation: assumptions needed

�incl = �0(p
cut
T ) + ��1(p

cut
T )



Uncertainties: Fixed Order

C =

✓
�2

incl +�2
�1 � 2�incl��1y ��2

�1 +�incl��1y

��2
�1 +�incl��1y �2

�1

◆

C =

✓
�2

incl +�2
�1 ��2

�1

��2
�1 �2

�1

◆
��1y = 0 )Stewart-Tackmann method: assume

i.e. inclusive cross sections of different multiplicity have uncorrelated uncertainties
Stewart, Tackmann


1107.2117

using MCFM, HNNLO
MSTW NNLO PDFs

direct scale variation
mH = 125 GeV
Ecm = 8 TeV
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pTcut @GeVD

s
0
@pbD

pp Æ H at NLO

using MCFM, HNNLO
MSTW NNLO PDFs

S-T procedure
mH = 125 GeV
Ecm = 8 TeV

0 10 20 30 40 50
0

2

4

6

8
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12

14

pTcut @GeVD

s
0
@pbD

pp Æ H at NLO

standard “direct” scale variation Stewart-Tackmann procedure



Uncertainties: Fixed Order

C =

✓
�2

incl +�2
�1 � 2�incl��1y ��2

�1 +�incl��1y

��2
�1 +�incl��1y �2

�1

◆

C =

✓
�2

incl +�2
�1 ��2

�1

��2
�1 �2

�1

◆
��1y = 0 )Stewart-Tackmann method: assume

i.e. inclusive cross sections of different multiplicity have uncorrelated uncertainties
Stewart, Tackmann


1107.2117

⇤0(p
cut
T ) _ ⇤B

h
1 +

�s

⇥

⇣
KNLO � 2CA ln2

mH

pcutT

⌘
+ . . .

i

cancellation between large K-factor and logs
unphysical

part of the

total rate

bin cut between 
0 jets, 1+ jets

cause of uncertainty pinch:

using MCFM, HNNLO
MSTW NNLO PDFs

direct scale variation
mH = 125 GeV
Ecm = 8 TeV

0 10 20 30 40 50
0

2

4

6

8
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14

pTcut @GeVD

s
0
@pbD

pp Æ H at NLO



Uncertainties: Fixed Order

C =

✓
�2

incl +�2
�1 � 2�incl��1y ��2

�1 +�incl��1y

��2
�1 +�incl��1y �2

�1

◆

C =

✓
�2

incl +�2
�1 ��2

�1

��2
�1 �2

�1

◆
��1y = 0 )Stewart-Tackmann method: assume

i.e. inclusive cross sections of different multiplicity have uncorrelated uncertainties

efficiency method: assume 0-jet efficiency, total cross section uncertainties uncorrelated

Stewart, Tackmann

1107.2117

) �0y = �incl�0, ��1y = �incl(1� �0), �cut = ⇥incl�✏0
Banfi, Salam, 

Zanderighi 
1203.5773

both approaches physically well-motivated, although not always ideal



Uncertainties: Resummed

Uncertainties assessed by variation of factorization scales

�{µ, µH , µJ , µS} � �(⇥)

�S
res(⌧)

�J
res(⌧)

�µ(⌧) : collective variation of all scales (fixes logarithms, probes fixed order scale)

: jet scale variation (probes logarithms, fixes fixed order scale)

: soft scale variation (probes logarithms, fixes fixed order scale)

standard approach: 3 types of scale variation

�µ ! �y

�J
res, �

S
res ! �cut

associate scale variation with components of uncertainty:

these assignments are physically well-motivated, although not necessarily valid



Two Paths to Resummation

the two paths only 
agree at all orders

�(µi, �)

d�

d⇥
(µi)

d�

d⇥

�
µi(⇥)

�

�
�
µi(�), �

�

d/d�

d/d� set profiles

set profiles

cumulant  
with free scales

spectrum  
with free scales

cumulant with 
profile scales

spectrum with 
profile scales

path 1 path 2

truncation at given order 
creates higher order difference

�(µi(⇥max

), ⇥
max

) = �
incl

the cumulant preserves the 
inclusive cross section by default


