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Resummed Cross Sections

resummation predicts two quantities:

da( ) t
T L4 ) = spectrum

(i, T) : cumulant

T do
o« Y, T) = dr’ —
i) = [ a5

RGE, fixed order matching implemented
by profile scales: t; = p;(7)
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profile scale variations used
to assess scale uncertainties

| will take T to be thrust for this talk,
but generically it can be any
jet resolution variable



Resummed Cross Sections

resummation predicts two quantities:

da( ) t
T L4 ) = spectrum

(i, T) : cumulant

T do
o« Y, T) = dr’ —
i) = [ a5

RGE, fixed order matching implemented
by profile scales: t; = p;(7)

simple problem: typically,
these two predictions are inconsistent

cumulant vs. integrated spectrum
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How does the Inconsistency Arise?

cumulant spectrum
with free scales with free scales
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How does the Inconsistency Arise?

cumulant spectrum
with free scales with free scales

set profile
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set profile
scales

spectrum with
¥ profile scales
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TRUE WHEN WORKING
TO ALL OKDERS IN R¢&
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How does the Inconsistency Arise?

cumulant spectrum
with free scales with free scales

set profile
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Two Paths to the Spectrum

d
—dd M(pi(T), T) Vs, d_a (,UZ(T)) : difference probes the commutator [,Lbi = ;i (7), d/dT]
T T

d
cumulant (free scales) = spectrum (free scales) = spectrum (profiles) o X (i = i (7))
T

cumulant (free scales) = cumulant (profiles) — spectrum (profiles) [u; = p;(7)] X

in terms of full/partial derivatives:

d du; d d du; ,
= ({% dllj' — EZ(MZ'(T),T) — —U(ui(T)) o d_lj- X (higher order)

Almeida, Ellis, Lee,
Sterman, Sung, JW
1401.4460



Two Paths to the Spectrum

d d
— 3 (p;(7),7) Vs, d_a (1:(7)) : difference probes the commutator |; = (), d/dT]
T

dt
_ d
cumulant (free scales) = spectrum (free scales) = spectrum (profiles) o X i = pi(7)]
T
d
cumulant (free scales) = cumulant (profiles) — spectrum (profiles) [u; = p;(7)] X o
-
in terms of full/partial derivatives:
d 0  du; d do d;
— = — = | —2(u;(7),7) — —(1;(7))| o« — x (higher order
dr Ot drt dr (1a(7);7) dr (14:(7)) dr (hig . E”_> )
cumulant vs. integrated spectrum Sterman, Sung, JW
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Accuracy of Each Resummed Cross Section

Z(,LLZ'(T), 7‘)

+ |nclusive cross section
+ correlations in uncertainties
= poor large T behavior in spectrum

= poor point-by-point uncertainties
In the spectrum

accurate in the
inclusive/integrated sense

VS.

do

e (M (T ))

+ accurate shape in the transition/tail
+ robust point-by-point uncertainties
= Inclusive cross section

= correlations in uncertainties

accurate in the
exclusive/differential sense



Accuracy of Each Resummed Cross Section

do

> (,ui (1), 7‘) VS. e (Nz‘ (7'))
T

+ Inclusive cross section + accurate shape in the transition/tail
+ correlations in uncertainties + robust point-by-point uncertainties
= poor large T behavior in spectrum = Inclusive cross section

= POOr point-by-point uncertainties = correlations in uncertainties

In the spectrum
accurate in the accurate in the
inclusive/integrated sense exclusive/differential sense

| will describe a resummation method
that gives a spectrum accurate both
exclusively and inclusively



Accuracy of Resummed Cross Sections

| will describe a resummation framework
that gives a spectrum accurate both
exclusively and inclusively

cumulant vs. integrated spectrum

cumulant vs. integrated o-improved spectrum
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1.0

Accuracy of Resummed Cross Sections

| will describe a resummation framework
that gives a spectrum accurate both
exclusively and inclusively

cumulant vs. integrated spectrum

cumulant
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Connection to Known Problems

Spectra with the wrong inclusive cross section is a well-known problem

1.1
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Intimately connected with the fact that the derivative of the cumulant
has poor behavior in the transition/tail region
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Connection to Known Problems

Want to associate scale variation to specific components of uncertainty

general covariance matrix decomposition:

_ 1] consider the cross section for N jet bins
C =05+ E Ct J

e.g. 2-jet and =3-jet bins for thrust
*\ i<j \

fully correlated anti-correlated 2-by-2 blocks
C,y = &yﬁ;}" A!  :yield uncertainty for bin i
fully correlated with total rate
y 9 1 —1 N
Cay = (AZy) ( 1 ) AL :migration uncertainty
vJ between bins/and



Connection to Known Problems

Want to associate scale variation to specific components of uncertainty

general covariance matrix decomposition:

_ E : ] consider the cross section for N jet bins
C= CY + C1(:11‘5

e.g. 2-jet and =3-jet bins for thrust
>\ i< \

fully correlated anti-correlated 2-by-2 blocks
C,y = &yﬁ;}" A!  :yield uncertainty for bin i
fully correlated with total rate
y 9 1 —1 N
Cay = (AZy) ( 1 ) . AL :migration uncertainty
vJ between bins/and

soft, jet scale variations should not change the inclusive cross section:

Wy, ks variations map directly onto migration uncertainties
iff they leave the inclusive cross section unchanged

this is not the case for standard profile variations



The Main ldea

Define a resummation method with two novel features:

1. Add higher order terms to the spectrum that bring the
inclusive cross section close to the fixed order value

- must maintain a sensible distribution in the tail region
- must be consistent across fixed order scales (convergence)

2. Use an algorithm to identify families of soft and jet profiles that
preserve the total cross section

- use these families to determine the soft, jet scale uncertainties

- our algorithm can identify arbitrarily many profiles preserving
the total cross section, and we can test its robustness



Step 1

1. Add higher order terms to the spectrum that bring the
inclusive cross section close to the fixed order value

Use the fact that the cumulant derivative / spectrum difference is higher order:

N do , .
add | %(jis(7),7) = = (a(r)) | ()
use a special smooth profile suppression factor to
so that dji;/dT is smooth reduce effect in the tail
|
soft profiles \ suppression factor k(1)
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Step 1

1. Add higher order terms to the spectrum that bring the
inclusive cross section close to the fixed order value

Use the fact that the cumulant derivative / spectrum difference is higher order:

do

add [ ; (fii (T )} k(7)

N

use a special smooth profile

so that dji;/dT is smooth

comparison between resummation methods
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Step 1

1. Add higher order terms to the spectrum that bring the
inclusive cross section close to the fixed order value

Use the fact that the cumulant derivative / spectrum difference is higher order:

add [ ; 49 Ga(r )} k(7)

A

use a special smooth profile suppression factor to
so that dji;/dT is smooth reduce effect in the tail
comparison between resummation methods comparison between resummation methods
: . 3.5 . _
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Step 2

2. Use an algorithm to identify families of soft and jet profiles that

preserve the total cross section

we will attempt to fill the
standard scale variation band
with profiles that all preserve
the inclusive cross section

preserve reliable
point-by-point uncertainties
and
capture long-distance correlations

1.0,

0.8|
0.6]
0.4|

0.2

central ,
scale. .’

™~

AN

, Cross section
/7 . . . .
-~ preserving variation ]

-
”
—

- -
— =
=




Step 2

2. Use an algorithm to identify families of soft and jet profiles that
preserve the total cross section

This can be cast as a math problem: find u(t) such that

Tmax do.
Oincl — / dT d_(:u(7->7 T)
0 T

subject to some simple constraints on u
(monotonicity, smoothness, fixed shape near endpoints)

This is a fairly generic problem,
and we have devised a generic algorithm to solve it

Quiz: what is Bolzano’s Theorem?



The Intermediate Value Theorem
(Bolzano’s Theorem)

for continuous functions:

S~ i ~ P
‘\» >

fla) <0< f(b) = dcé€la,b] with f(c) =0 Bernard Bolzano
(1781-1848)

fun application:

At any time, on any great circle,
there are two points on opposite sides
of the Earth with the same temperature




Extensions of Bolzano’s Theorem

standard “single point” case
find a point where a function vanishes

fla) <0< f(b) = dcéela,b] with f(c) =

“line” case
find a function with a given integral

/fdown<0</fup = /f*—o

where f>|< — a*fup + ( — Uy fdowna Ay —

_f; fdown
f;(fup _ fdovvn)

Vi, faown(®) < fu(®) < fup(®) OF faown(2) 2 fi(2) 2 fup(z)




Extensions of Bolzano’s Theorem

suppose we want to find g(x) satisfying “parametric line” case (our case)

/da: Rlg(x),x] = A where A is a non-extremal constant

take two g satisfying

/dCUR[ngWH(Z'), $] — Adown < A

/d:z: Rlgup(z),z] = Ayp > A
then there is some g such that /dw Rlg«(z),z] = A

for instance g+ = QxGup + (1 — a*)gdown ,  Qx € [Oa 1]

In fact, there are infinitely many g« such that

Vi, gdown(T) < gx(2) < Gup(T) O Gdown(®) = gu(®) 2 gup(2)



The Bolzano Algorithm

1. ldentify a set of candidate profiles u

2. Separate candidate profiles by whether or not they give an inclusive cross section
less than or greater than the true inclusive cross section

{u} = {tupts {Hdown}

3. On every pair of “down” and “up” profiles, find a: such that

Hsx = Qx fbup + (1 — a*),udown 10—
has the correct inclusive cross section 0.8:_
4. Select all yx satisfying desired properties: y 0.6f
- Monotonicity 0.4] up” profile +—"down”
I profile
- Smoothness 0.2} .- cross section -
vary vary - -7 reserving variation |
\V/T 'udown( ) < (T) < Hup (7-) . . 3 J '

can replace step 3 with a spectrum-space solution: . .
P P & P N candidate profiles

Ly =01 [0* = b0 (fup) + (1 — b*)a(,udown)] give ~N?/4 solutions



Profiles: Algorithm and Solutions

start with random profiles that

starting soft "up" profiles

1.0
fill out the standard uncertainty band /
divide into groups by -
the total cross section 0.6}
&
1.0 | starting soft profilesl | y 0.4}
200 profiles 477 02|
0.8 & / ,. / ) |
080 0.1 0.2 0.3 0.4
0.6¢ -
2
0.4¢
0.2 down
080 \

"N
=

fix the shapes in the
small and large thrust regions
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Profiles: Algorithm and Solutions

starting soft "up" profiles

1.0

run Bolzano algorithm
to find solutions

soft profile solutions, NLL'+NLO

9424 profiles

do the same thing for
the jet profiles



Comparison between Resummation Methods

comparison between resummation methods
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Comparison between Resummation Methods

comparison between resummation methods
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Convergence

convergence for the o-improved spectrum

convergence for the o-improved spectrum

7/

£/ NLL'+NLO ] 301 transition = MLHNLO
7 / i
%% NNLL'+NNLO | ; %% NNLL'+NNLO

peak

002 004 006 008 0.0 0.10 015 020 025 030

T T

slight non-convergence in the peak region
exists also in the standard resummed spectrum
(artifact of pinching in resummation scale dependence)



Cumulant

cumulant vs. integrated o-improved spectrum
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1.0

1.0

Cumulant

cumulant vs. integrated o-improved spectrum
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X(7)/Be(7)

Cumulant
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X(7)/Be(7)

cumulant vs. integrated o-improved spectrum

Cumulant

cumulant vs. integrated o-improved spectrum
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Correlations

can study correlations across T:

do do
S = — 1) — 7 \Mcentra
- (1) = =~ (Hcentral)

soft profile correlations, NLL'+NLO

“gap” regions hard to fill,
require precise correlations
at small and large T




Correlations

can study correlations across T:

do do
S = — 1) — 7 \Mcentra
- (1) = =~ (Hcentral)

soft profile correlations, NLL'+NLO
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(,LL — IUJC) (7_2)

Two-Point Correlations

can study correlations across T:

do do
E (,Uz) — E (Mcentral)

T1 =0.03, T2 =0.12

default region

profile spectrum
\Soft spectrum correlations, NLL'+NLO

soft profile correlations, NLL'4+NLO
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(:LL — :uc) (7-2)

Two-Point Correlations

can study correlations across T:

do do
E (,Uz) — E (,ucentral)

T1 = 0.03, T2 = 0.06

default region

profile spectrum
soft profile correlations, NLL'4+NLO / \soft spectrum correlations, NLL'+NLO

\
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(,LL — ;uc) (7_2)

Two-Point Correlations

can study correlations across T:

do do
E (,Uz) — E (Mcentral)

T1 =0.03, T2 =0.3

profile
soft profile correlations, NLL'+NLO
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Future Directions

C-parameter in ete"

100 'I MH f
HMi i ¢
80F Q=91.2GeV
- Hoang, Kolodrubetz,
60F  Mateu, Stewart

1411.6633 ]
Uy = Q\/% h

C-parameter has very
distinctive profile scales

large non-perturbative regime,
large canonical regime

Prediction / Data

vector boson pr distribution at LHC
1.4 AR SRR A SR y———r—

- ATLAS 1s=7Tev; J Ldt=4.7fb" l Data uncertainty
1 -3; ATLAS 1406.3660
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persistent disagreement with data
across theoretical predictions
(resummation, Monte Carlo generators)

possible discrepancies in matching



Conclusions

- Resummation improves the accuracy of many exclusive cross sections,
but loses accuracy in the corresponding inclusive cross section

- We have defined a method for resummation to preserve the accuracy at both
the inclusive and exclusive level

* An algorithm is used to find profile scales preserving the total cross section

* Rigorously connects physical components of uncertainty with parameters of
the factorization theorem

* Studies on thrust in e*e™ are very promising

 Follow-up studies for event shapes, especially hadronic collisions

43
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Uncertainties: Fixed Order

fixed order uncertainties estimated via variation .
= L
of renormalization, factorization scales o(fiR; HF) / O(prs r)L(1F)

consider two jet bins: Z + 0 jets, Z + =1 jets o (p%ut% 021(]?%Ut)

separated by a jet pr veto
Oincl — 00 (p%ut) + O-Zl(p%w)

covariance matrix has the form:

O — A(2)y AOyQAzly + Aggt _%gut
Aoy A1y AS 4, —A A

cut cut

inclusive cross section constraint: Oincl = 09 +0>1 = Aina = Aoy + A1y

C = ( Ai21r1(:l T A2>1 o 2AinclA21y _A221 -+ AinclAzly )

—AZ| 4+ AjnaAsy AL,

cut

2 degrees of freedom: A>jy, A>q = (A221y N )1/2

unclear how to estimate parameters from scale variation: assumptions needed



Uncertainties: Fixed Order

O = ( Ai21r1c:1 + A2>1 o QAiHCIAzly _A221 T AinclA21y )

—AZ + AjnaAsiy A2,

A? A2, A2
Stewart-Tackmann method: assume A>1, =0 = C = incl T 2> >1
=1y —A2 AZ
>1 >1

l.e. inclusive cross sections of different multiplicity have uncorrelated uncertainties
Stewart, Tackmann

1107.2117
pp — H at NLO pp —» H at NLO
14} direct scale variation ] 14% S—T procedure
" E.. =8TeV ] E., =8 TeV
100 10-
2 s 28
S 6 e
4 4 |
ol using MCFM, HNNLO | o using MCFM, HNNLO
: MSTW NNLO PDFs | f MSTW NNLO PDFs |
O; ““““““““““““““ i 0’ \\\\\\\\\\\\\\\\\\\\\\\\\\
0 10 20 30 40 50 0 10 20 30 40 50
pT" [GeV] pT" [GeV]

standard “direct” scale variation Stewart-Tackmann procedure



Uncertainties: Fixed Order

_A221_‘|‘ AinclAzly A221

O = ( Ai21r1c:1 + A2>1 o QAiHCIAZb’ _A2>1 T AinclA21y )

A? A2, A2
Stewart-Tackmann method: assume A>1, =0 = C = incl T 2> >1
=1y —A2 AZ
>1 >1

l.e. inclusive cross sections of different multiplicity have uncorrelated uncertainties

Stewart, Tackmann
1107.2117

cause of uncertainty pinch:

(87
t S
oo(p7") OCOB[1+_(KNLO_20A In s o
T - direct scale variation

Pr ;
unphysical \ \ 2 ij _ ézTSe(\}/eV
cancellation between large K-factor and logs  _
2 8
/ [ =
part of the bin cut between 4
total rate O jets, 1+ jets 2

o My n pp = H at NLO
cut Tt 14

using MCFM, HNNLO |
MSTW NNLO PDFs |




Uncertainties: Fixed Order

O = ( Ai2nc:l + A2>1 o QAiHCIAzly _A221 T AinC1A21y )

_A221_‘|‘ AinclAzly A221

A? A2, A2
Stewart-Tackmann method: assume As{, =0 = (C = incl T 2>1 >1
~ 1y —AQ AZ
>1 >1

l.e. inclusive cross sections of different multiplicity have uncorrelated uncertainties

Stewart, Tackmann
1107.2117

efficiency method: assume 0-jet efficiency, total cross section uncertainties uncorrelated

Banfi, Salam,
— AOy — AinclEOa AZly — Aincl(l — 60)7 ACut — UinclAeO Zanderighi

1203.5773

both approaches physically well-motivated, although not always ideal



Uncertainties: Resummed

Uncertainties assessed by variation of factorization scales

O{ s porr, g, b} — A(T)

standard approach: 3 types of scale variation

A, (T) : collective variation of all scales (fixes logarithms, probes fixed order scale)

A (7) : jet scale variation (probes logarithms, fixes fixed order scale)

res

A® (7) : soft scale variation (probes logarithms, fixes fixed order scale)

res

associate scale variation with components of uncertainty:

A, — Ay
J S
Ares7 Ares — ACut

these assignments are physically well-motivated, although not necessarily valid



Two Paths to Resummation

cumulant
with free scales

set profiles //

spectrum

cumulant with _;
' § with free scales

0]

profile scales § ~'\ | path 1 path 2 | §

d/ dr\ \ /' / set profiles

the two paths only

the cumulant preserves the
agree at all orders

inclusive cross section by default S
spectrum with

E(,uz (Tmax)y 7_maux) — Oincl profile scales trunca.tion at given .order
creates higher order difference



