Primary massive quark production in Thrust : Theory vs MC

### Bahman Dehnadi

In collaboration with A. H. Hoang, M. Butenschön, V. Mateu and I. W. Stewart



XIIth Workshop on Soft-Collinear Effective Theory, 25-27 March, 2015, Santa Fe, New Mexico

## **Motivations and Aims**

• Top mass is highly correlated to the Higgs mass and electroweak observables

#### **Problem not addressed: What is M<sup>MC</sup>**?

 $\rightarrow$  Additional conceptual uncertainty in M<sup>MC</sup><sub>t</sub>: O(1 GeV)

But with respect to what?  $M_t^{MC} = m_t^{\text{short-distance}} \neq O(1 \text{ GeV})$ 

 $M_t^{\rm MC} = 173.21 \pm 0.51(stat) \pm 0.71(syst) \; {\rm GeV}$ 

K.A. Olive et al. (PDG), (2014)

Aim: Systematics of heavy quark mass parameter in Monte Carlo generators. (Pythia)



## **Motivations and Aims**

The concept of mass in the MC depends on the structure of the perturbative part and the interplay between the perturbative and the non-perturbative parts in the MC.





## **Thrust Distribution**

Systematic treatment of mass dependence  $e^+e^-$  thrust distribution  $\rightarrow$  theoretically clean. softradiation Thrust: Measure for "Jettiness" of the final state. thrust axis  $\hat{n}$  $\tau = 1 - \max_{\hat{n}} \frac{\sum_{i} |\hat{t} \cdot \vec{p_i}|}{O}$  $\theta_T$  $e^+$ 1 d $\sigma$ beam pipe  $\sigma_0 \, \mathrm{d}\tau$ = 91.2 GeV hemisphere a



universität-

### **Jets with Massless Quarks**

- Massless quarks
  - ✓ SCET: Full N<sup>3</sup>LL + 3-loop non-singular

Becher, Schwartz Bauer, Fleming, Lee, Sterman Fleming, Hoang, Mantry, Stewart



Secondary massive quarks

- ✓ SCET: Full NNLL' / N<sup>3</sup>LL
- ✓ New degrees of freedom: mass modes
- ✓ Continuous description using VFNS



Gritschacher, Hoang, Jemos, Pietrulewicz, Mateu (2013 + 2014) Presented by Piotr Pietrulewicz (SCET 2013/2014)



## **Jets with Massive Quarks**

- Primary massive quarks
  - SCET with massive quarks NNLL
  - ✓ bHQET: full NNLL' / N<sup>3</sup>LL

Fleming, Hoang, Mantry, Stewart Jain, Scimemi, Stewart





- . Fully massive (primary and secondary) quarks
  - Complete and systematic description

Presented by Andre Hoang (SCET 2014) Presented by Aditya Pathak (SCET 2014)

 $\rightarrow$  Aim of this talk (status report)





## **Jets with Massive Quarks**

Complete description of the entire thrust distribution using various scenarios and a sequence of • effective field theory setups.

[1]:Pietrulewicz, Gritschacher, Hoang, Jemos, Mateu (2014)



SCET2015, Santa Fe, New Mexico 6/20

# Scenario (IV)

$$\left| \frac{1}{\sigma_0} \frac{\mathrm{d}\hat{\sigma}(\tau)}{\mathrm{d}\tau} \right|^{\mathrm{SCET-IV}} = Q H_Q^{(n_f)}(Q,\mu_Q) U_{H_Q}^{(n_f)}(Q,\mu_Q,\mu_J) \int \mathrm{d}s \int \mathrm{d}k J^{(n_f)}(s,\mu_J,\overline{m}^{(n_f)}(\mu_J))$$

$$U_S^{(n_f)}(k,\mu_J,\mu_S) S_{\mathrm{part}}^{(n_f)}(Q\tau - Q\tau_{\mathrm{min}} - \frac{s}{Q} - k,\mu_S) + (\mathsf{QCD}) \,\mathsf{Non-Singular}$$



 $\sim$  (QCD) No-singular  $\rightarrow$  Non-singular + Sub-leading singular contributions



SCET2015, Santa Fe, New Mexico 7/20

1

#### Partonic distribution at NNLL

# Scenario (III)



> Soft mass-mode matching: integrating in the mass-mode (secondary) effects in the evolution of the soft function (top-down resummation).  $O(\alpha_s^2)$ 



#### **bHQET**



> Matching coefficient of SCET and bHQET have a large log from secondary corrections.



SCET2015, Santa Fe, New Mexico 9/20

# Further Theoretical Remarks

**Non-singular** terms for vector and axial-vector channels computed analytically at NLO

$$\frac{d\sigma_{\text{part.}}^{\text{nonsing.}}(\tau)}{d\tau} = \frac{d\sigma^{\text{FO}}(\tau)}{d\tau} - \frac{d\sigma_{\text{part.}}^{\text{SCET}}(\tau)}{d\tau}$$

Convolution with a **shape** function to incorporate non-perturbative effects

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \Big(\frac{\mathrm{d}\sigma_{\mathrm{part}}^{\mathrm{SCET}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\sigma_{\mathrm{part}}^{\mathrm{nonsing}}}{\mathrm{d}\tau}\Big)\Big(\tau - \frac{k}{Q}\Big) \times S_{\tau}^{\mathrm{model}}(k - 2\Delta(R, \mu))$$

#### Short distance masses

iversität

- Mass dependence in all matrix elements and threshold corrections. •
- Most relevant quark mass dependence is encoded in jet functions.
- The short-distance mass definition should not upset the power counting of the theory.

$$\mu \ge m \quad : \underline{\text{MS mass}}(\mathbf{n_l+1}) \quad \bar{m}(\mu) = m_{\text{pole}} - \bar{m}(\mu) \sum_{n=1}^{\infty} \sum_{k=0}^{n} a_{nk} \left(\frac{\alpha_s(\mu)}{4\pi}\right)^n \ln^k \frac{\mu}{\bar{m}}$$
  
$$\mu < m \quad : \underline{\text{R-scale short distance mass}}_{\text{I}}(\mathbf{n_l}) \quad \text{Hoang, Jain, Scimemi, Stewart}$$
  
$$\cdot \text{ Jet mass from bHQET jet function}_{\text{I}} \qquad m_{\text{MSR}}(R) = m_{\text{pole}} - R \sum_{n=1}^{\infty} a_n \left(\frac{\alpha_s(R)}{4\pi}\right)^n \qquad \lim_{n \to \infty} \frac{1}{100} \left[ \frac{1}{100} \left( \frac{1}{10$$

MSR mass: derived form MS mass relation

50

100

150

D

150

## **Profile Function**

Profile functions should sum up large logarithms and achieve smooth transition between the peak, tail and far-tail.



## **Profile Function**

Profile functions should sum up large logarithms and achieve smooth transition between the peak, tail and far-tail.



NNLL (singular) + NLO (non-singular) + power correction and renormalon subtraction



SCET2015, Santa Fe, New Mexico 13/20

NNLL/NLL (singular) + NLO (non-singular) + power correction and renormalon subtraction





NNLL (singular) + NLO (non-singular) + power correction and renormalon subtraction



SCET2015, Santa Fe, New Mexico 16/20



NNLL (singular) + NLO (non-singular) + power correction and renormalon subtraction



SCET2015, Santa Fe, New Mexico 18/20

NNLL (singular) + NLO (non-singular) + power correction and renormalon subtraction



SCET2015, Santa Fe, New Mexico 19/20

# **Conclusions and outlook**

#### Conclusions

- Complete description of the entire thrust distribution for boosted heavy quarks achieved with the formalism of VFNS for final-state jets and a sequence of effective field theory setups.
- > The peak position in thrust is very sensitive (particularly at low energies) to the mass.
- Estimating theory errors is challenging
  - Under control directly at peak and tail.
  - Below peak still under investigation.
- > Our theory uncertainty for the mass extraction is reasonable and encouraging
  - ✓ Bottom  $\rightarrow$  less than 0.5 GeV
  - ✓ Top  $\rightarrow$  almost 0.5 GeV
- > Simultaneous fit for  $\alpha_s$  and  $\Omega_1$  is difficult, particularly for top  $\rightarrow$  could be fixed externally
- > Agreement between theory and Pythia:
  - Good for bottom
  - ✓ Some effects are likely missing for top (shoulder region)  $\rightarrow$  off shell top + electroweak effects

#### Outlook

- Improving the precision to N<sup>3</sup>LL seems mandatory.
- Off-shell top production + electroweak effects.

