Fractional Jet Multiplicity

Daniele Bertolini UC Berkeley, Lawrence Berkeley National Laboratory

Outline

- New observable: fractional jet multiplicity
- This talk: discuss analytic predictions and unique features [DB, J.Thaler, and J.Walsh 1501.01965]

Fractional Jet Multiplicity *definition* E rootional Jot N Since we will be at each will be at each of the collision of the coll

$$
\widetilde{N}_{\text{jet}} = \sum_{i \in \text{event}} \frac{E_i}{E_{iR}} \Theta(E_{iR} > E_{\text{cut}})
$$

$$
E_{iR} = \sum_j E_j \Theta(\Delta \theta_{ij} < R)
$$

= energy in a cone around particle i

Fractional Jet Multiplicity *definition* E rootional Jot N Since we will be at each will be at each of the collision of the coll

Example of distributions in $e^+e^- \rightarrow$ jets

Example of distributions in $e^+e^- \rightarrow$ jets

I will describe analytically the near-integer distribution

Daniele Bertolini - SCET 2015

Collimated particles give integer number of jets

Collimated particles give integer number of jets gi ve integer number of jets

 $\widetilde{N}_{jet} = \sum_i E_i / E_{iR}$ $=$ $1/3$ esterne
Experience $\mathbf{E}_{\mathbf{i}}$ _{jet} = $\mathbf{\Sigma}_{\mathbf{i}}$ **E**_i $\mathbf{E}_{\mathbf{i}}$ / **E**_{iR}

Collimated particles give integer number of jets gi ve integer number of jets

$$
\widetilde{N}_{\rm jet} = \Sigma_{\rm i} E_{\rm i} / E_{\rm iR}
$$

 $=$ $1/3+1/3$

Collimated particles give integer number of jets gi ve integer number of jets

$$
\widetilde{N}_{\rm jet} = \Sigma_{\rm i} E_{\rm i} / E_{\rm iR}
$$

 $= 1/3 + 1/3 + 1/3 = 1$

Less collimated particles give fractional number of jets

Less collimated particles give fractional number of jets **c** es give fractional number of jets

$$
\widetilde{N}_{\rm jet} = \Sigma_{\rm i} E_{\rm i} / E_{\rm iR}
$$

 $= 1/2 + 1/3 + 1/2 = 4/3$

Soft limit drives the approach to the integer value ap proach to the integer value

$$
\widetilde{N}_{\text{jet}} = \Sigma_{\text{i}} E_{\text{i}} / E_{\text{iR}}
$$

\n
$$
\begin{pmatrix}\n1 \\
2 \\
z_3\n\end{pmatrix}\n\begin{pmatrix}\n3 \\
z_3\n\end{pmatrix}\n= E_3 / E_{\text{tot}} = 1/3
$$

\n
$$
= 4/3 \approx 1.3
$$

Consider now one particle going soft $E_1=E_2>E_{\text{cut}}$ and $E_3\rightarrow 0$

Soft limit drives the approach to the integer value ap proach to the integer value

$$
\widetilde{N}_{\text{jet}} = \Sigma_{\text{i}} E_{\text{i}} / E_{\text{IR}}
$$
\n
$$
\widetilde{Z}_{\text{2}} = E_{\text{3}} / E_{\text{tot}} = 1/9
$$
\n
$$
\widetilde{Z}_{\text{1}} = 1.1
$$

Consider now one particle going soft $E_1=E_2>E_{\text{cut}}$ and $E_3\rightarrow 0$

Soft limit drives the approach to the integer value ap proach to the integer value

$$
\widetilde{N}_{\text{jet}} = \Sigma_{\text{i}} E_{\text{i}} / E_{\text{iR}}
$$
\n
$$
\begin{pmatrix}\n1 & 2 \\
2 & 3\n\end{pmatrix}\n_{\text{z3}} = E_{3}/E_{\text{tot}} = 0
$$
\n
$$
\widetilde{N}_{\text{jet}} = \Sigma_{\text{i}} E_{\text{i}} / E_{\text{iR}}
$$

Consider now one particle going soft $E_1=E_2>E_{\text{cut}}$ and $E_3\rightarrow 0$

<u>The contract of the contract </u>

Well separated clusters of particles give integer number of jets

Well separated clusters of particles give integer number of jets er s of particles give integer number of jets

$$
\widetilde{N}_{\rm jet} = \Sigma_{\rm i} E_{\rm i} / E_{\rm iR}
$$

 $= 1/2+1/2+1=2$

Fractional Jet Multiplicity *properties*

- To get non-integer behavior we need at least three particles. $LO = O(\alpha_s^2)$ in pQCD
- They have to be collimated (\sim within 2R) and occupy special regions of phase space
- Near-integer behavior is driven by soft logarithms

Consider $e^+e^- \rightarrow \text{jets}$

 $\Delta_{2-} = 2 - \widetilde{N}_{\text{jet}}, \quad \Delta_{2+} = \widetilde{N}_{\text{jet}} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{\text{jet}}$ $d\sigma$ $d\Delta_{2\pm}$ = z
Z $d\Phi_4 \mathcal{T} (e^+e^- \to 4 \text{ partons}) \mathcal{F}(\Delta_{2\pm}, \Phi_4)$

 $\Delta_{2-} = 2 - \widetilde{N}_{\text{jet}}, \quad \Delta_{2+} = \widetilde{N}_{\text{jet}} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{\text{jet}}$

 $d\sigma$ $d\Delta_{2\pm}$ = z
Z $d\Phi_4 \mathcal{T} (e^+e^- \to 4 \text{ partons}) \mathcal{F}(\Delta_{2\pm}, \Phi_4)$ $\mathcal{T}(e^+e^- \to 4 \text{ partons}) \simeq \mathcal{T}(e^+e^- \to q\bar{q}) \cdot \sum \mathcal{T}_k^{\text{coll}}(1 \to 3)$ *k* $k \in \{q \rightarrow g g q \,, \bar{q} \rightarrow g g \bar{q} \,, q \rightarrow q' \bar{q}' q \,, \bar{q} \rightarrow q' \bar{q}' \bar{q} \}$

 $\Delta_{2-} = 2 - \widetilde{N}_{\text{jet}}, \quad \Delta_{2+} = \widetilde{N}_{\text{jet}} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{\text{jet}}$

$$
\frac{d\sigma}{d\Delta_{2\pm}} = \int d\Phi_4 \, \mathcal{T}(e^+e^- \to 4 \text{ partons}) \mathcal{F}(\Delta_{2\pm}, \Phi_4)
$$
\n
$$
\mathcal{T}(e^+e^- \to 4 \text{ partons}) \simeq \mathcal{T}(e^+e^- \to q\bar{q}) \cdot \sum_k \mathcal{T}_k^{\text{coll}}(1 \to 3) \qquad \text{measurement}
$$
\n
$$
k \in \{q \to ggg, \bar{q} \to gg\bar{q}, q \to q'\bar{q}'q, \bar{q} \to q'\bar{q}'\bar{q}\} \qquad \text{function}
$$

Near-integer distribution

soft logarithms and rapidity divergences

Near-integer distribution *soft logarithms and rapidity divergences*

Modes controlling near-integer behavior

Fixed order result

$$
\frac{d\sigma}{d\Delta_{2\pm}} = \sigma_0 \delta(\Delta_{2\pm})
$$

+ $\kappa_1 \left(\frac{\alpha_s}{\pi}\right)^2$ $\mathcal{L}_1(\Delta_{2\pm}) + \kappa_0 \left(\frac{\alpha_s}{\pi}\right)^2$ $\mathcal{L}_0(\Delta_{2\pm})$ + non-singular terms

- We calculated k_1 and k_0 (which include different color structures and leading dependence on $z_{\text{cut}} = E_{\text{cut}} / E_{\text{tot}}$)
- Get non singular from Event2

Event2 comparison:

Event2 comparison:

Daniele Bertolini - SCET 2015

Fractional jet multiplicity

- Near-integer driven by soft-logs only
- Hybrid event-shape / jet-algorithm behavior
- Non-additive / non-factorizable / non-global

Near-integer distribution *Hybrid event-shape / jet algorithm*

Near-integer distribution

additivity / factorizability / non-global logs

Near-integer distribution *beyond FO, collinear functions*

$$
C_{q,\bar{q}}(\Delta_{2\pm}) = \delta(\Delta_{2\pm}) + \sum_{n=2}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{k=-1}^{n-1} \left[\kappa_{k,+}^{(n)} \mathcal{L}_k(\Delta_{2\pm}) + \kappa_{k,-}^{(n)} \mathcal{L}_k(\Delta_{2\pm}) \right]
$$

Near-integer distribution beyond FO, collinear functions a candidate factorization theorem for 2*[±]* in Sec. 5, which includes a renormalization-groupinder "collinear". In Sec. 6, we arrive the construction". In Sec. 6, we have a second to extend the second our

 $d\sigma$ $d\Delta_{2\pm}$ \simeq $\simeq \sigma_0 \, C_q(\Delta_{2\pm}) \otimes C_{\overline{q}}(\Delta_{2\pm})$ 2 Aspects of Fractional Jets

Wide angle soft emissions give enhanced logarithmic contributions to \dot{N}_{jet} =2 cross-section rapidity distances

ra e iet⁼² cross-section

Near-integer distribution *beyond FO, collinear functions* ar intograp dictribution UGH THE YY FRONT ON WATER ON ANALYTIC CALCULATIONS TO PARAMETERS TO PARAMETERS TO PARAMETERS TO PHONE IN SECTION TO PARAMETERS TO PARAMETE y change, commodition in Sec. 8. The appendices contained results and details.

 $d\sigma$ $d\Delta_{2\pm}$ \simeq $\simeq \sigma_0 \, C_q(\Delta_{2\pm}) \otimes C_{\overline{q}}(\Delta_{2\pm})$ $\overline{\mathrm{d} \Delta_{2\pm}}$ - $\sigma_0 C_q(\Delta_{2\pm}) \otimes C_{\bar{q}}(\Delta_{2\pm})$

At higher orders they also enhance fractional N_{jet}
cross section cross-section e jet(*E*cut*, R*) = ^X

Near-integer distribution *beyond FO, collinear functions*

 $d\sigma$ $d\Delta_{2\pm}$ \simeq $\simeq \sigma_0 \, C_q(\Delta_{2\pm}) \otimes C_{\overline{q}}(\Delta_{2\pm})$

Note that this contribution is contained in C

Near-integer distribution *a candidate factorization theorem*

$$
\frac{d\sigma}{d\Delta_{2\pm}} \simeq \sigma(\widetilde{N}_{\rm jet} = 2) \left[C_q(\Delta_{2\pm}) \otimes C_{\overline{q}}(\Delta_{2\pm}) \right]
$$

Near-integer distribution *a candidate factorization theorem*

$$
\frac{d\sigma}{d\Delta_{2\pm}} \simeq \sigma(\widetilde{N}_{\rm jet} = 2) \left[C_q(\Delta_{2\pm}) \otimes C_{\overline{q}}(\Delta_{2\pm}) \right]
$$

$$
\sigma(\widetilde{N}_{\rm jet} = 2) = \sigma_0 H_{q\overline{q}}(Q, \mu) J_q(Q, R, z_{\rm cut}, \mu) J_{\overline{q}}(Q, R, z_{\rm cut}, \mu) S_{q\overline{q}}(R, z_{\rm cut}, \mu)
$$

$$
+ \sigma_2^{\rm non-fac}(Q, R, z_{\rm cut}, \mu)
$$

Improved distributions

- Include $O(\alpha_s^4)$ terms from convolutions
- Running coupling $\alpha_s(\mu), \mu = Q\sqrt{\Delta_{2\pm}}$

Daniele Bertolini - SCET 2015

Conclusions

- Fractional jet multiplicity can be used as a novel and more powerful probe of jet formation. E.g. quark/gluon discrimination?
- It has peculiar analytic properties. However, I showed we still have very good analytic control, which in principle is improvable. E.g. generalize to LHC case?
- Wide dynamic range, potential test of matching/merging matrix-element/parton shower. Potential phenomenological applications e.g. in multijet final states?

Backup

near-integer phase space configurations

$$
\Delta_{2-} = 2 - \widetilde{N}_{\rm jet}, \quad \Delta_{2+} = \widetilde{N}_{\rm jet} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{\rm jet}
$$

Backup Ω Ω plicities ², 2+, and ³. Compared to Fig. 4, the value of *N*ejet is 1 unit higher, because the event

near-integer phase space configurations contains an additional isolated parton (not shown). For each observable, we show the corresponding contributions from di↵erent angular regions and soft limits. Circles represent cones of radius *R*, large blue dots represent energetic partons, small red dots soft partons with *z<z*cut. The angular regions

$$
\Delta_{2-} = 2 - \widetilde{N}_{\rm jet}, \quad \Delta_{2+} = \widetilde{N}_{\rm jet} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{\rm jet}
$$

Backup *rapidity divergences*

 $\Delta = z_1z_2$

1 soft:
$$
I_{sc}(\Delta) = \int_0^\infty \frac{dz_1}{z_1} \int_0^1 \frac{dz_2}{z_2} (z_1 z_2)^{-2\epsilon} \delta(\Delta - z_1 z_2)
$$

\n2 soft: $I_{cs}(\Delta) = \int_0^1 \frac{dz_1}{z_1} \int_0^\infty \frac{dz_2}{z_2} (z_1 z_2)^{-2\epsilon} \delta(\Delta - z_1 z_2)$
\n1, 2 soft: $I_{ss}(\Delta) = \int_0^\infty \frac{dz_1}{z_1} \int_0^\infty \frac{dz_2}{z_2} (z_1 z_2)^{-2\epsilon} \delta(\Delta - z_1 z_2)$

Backup *rapidity divergences*

$$
\Delta = z_1 z_2
$$
energy-sharing "rapidity"

$$
s = z_1 z_2, \quad y = 1/2 \log(z_1/z_2)
$$

1 soft:
$$
I_{sc}(\Delta) = \Delta^{-1-2\epsilon} \int_{-\infty}^{\infty} dy \,\Theta\left(-\frac{1}{2}\ln(1/\Delta) < y\right)
$$

2 soft: $I_{cs}(\Delta) = \Delta^{-1-2\epsilon} \int_{-\infty}^{\infty} dy \,\Theta\left(y < \frac{1}{2}\ln(1/\Delta)\right)$
1, 2 soft: $I_{ss}(\Delta) = \Delta^{-1-2\epsilon} \int_{-\infty}^{\infty} dy$

Backup *rapidity divergences*

$$
\Delta = z_1 z_2
$$
energy-sharing "rapidity"

$$
s = z_1 z_2, \quad y = 1/2 \log(z_1/z_2)
$$

1 soft:
$$
I_{sc}(\Delta) = \Delta^{-1-2\epsilon} \int_{-\infty}^{\infty} dy \,\Theta\left(-\frac{1}{2}\ln(1/\Delta) < y\right) \left(\frac{\nu}{E_J}\right)^{\eta} s^{-\eta/2} e^{y\eta}
$$

\n2 soft: $I_{cs}(\Delta) = \Delta^{-1-2\epsilon} \int_{-\infty}^{\infty} dy \,\Theta\left(y < \frac{1}{2}\ln(1/\Delta)\right) \left(\frac{\nu}{E_J}\right)^{\eta} s^{-\eta/2} e^{-y\eta}$
\n1, 2 soft: $I_{ss}(\Delta) = \Delta^{-1-2\epsilon} \int_{-\infty}^{\infty} dy \left(\frac{\nu}{E_J}\right)^{\eta} s^{-\eta/2} |2\sinh y|^{-\eta}$ rapidity regulators

$$
I_{\text{full}}(\Delta) = I_{sc}(\Delta) + I_{cs}(\Delta) + I_{ss}(\Delta)
$$