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• New observable: fractional jet multiplicity	



• This talk: discuss analytic predictions and unique features	


    [DB, J.Thaler, and J.Walsh 1501.01965]
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Fractional Jet Multiplicity 
definition

Njet =
X

i2event

Ei

EiR
⇥(EiR > Ecut)

EiR =
X

j

Ej ⇥(�✓ij < R)

= energy in a cone around 
particle i

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.
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Fractional Jet Multiplicity 
definition

Njet =
X

i2event

Ei

EiR
⇥(EiR > Ecut)

EiR =
X

j

Ej ⇥(�✓ij < R)

Each particle in the event 	


can contribute to jet multiplicity

Apparent over-counting is fixed 	


by the weight Ei/EiR

= energy in a cone around 
particle i

[ Jets-Without-Jets	


DB, T.Chan, and J.Thaler 1310.7584]

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.
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Fractional Jet Multiplicity 
definition

Pythia 8
Herwig!!
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Example of distributions in e+e� ! jets
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Fractional Jet Multiplicity 
definition

Pythia 8
Herwig!!
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Example of distributions in e+e� ! jets

I will describe analytically the near-integer distribution



Daniele Bertolini - SCET 2015
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definition

Consider three hard particles 	


E1=E2=E3>Ecut

Collimated particles give integer number of jets
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Fractional Jet Multiplicity 
definition

Consider three hard particles 	


E1=E2=E3>Ecut

Njet = 𝝨i Ei / EiR

 = 1/3

Collimated particles give integer number of jets

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.
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Fractional Jet Multiplicity 
definition

Consider three hard particles 	


E1=E2=E3>Ecut

Njet = 𝝨i Ei / EiR

 = 1/3+1/3

Collimated particles give integer number of jets

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.
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Fractional Jet Multiplicity 
definition

Consider three hard particles 	


E1=E2=E3>Ecut

Njet = 𝝨i Ei / EiR

 = 1/3+1/3+1/3=1

Collimated particles give integer number of jets

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.
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Fractional Jet Multiplicity 
definition

Consider three hard particles 	


E1=E2=E3>Ecut

Less collimated particles give fractional number of jets
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Fractional Jet Multiplicity 
definition

Consider three hard particles 	


E1=E2=E3>Ecut

Njet = 𝝨i Ei / EiR

 = 1/2+1/3+1/2=4/3

Less collimated particles give fractional number of jets

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.
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Fractional Jet Multiplicity 
definition

Consider now one particle going soft	


E1=E2>Ecut and E3→0

Njet = 𝝨i Ei / EiR

 = 4/3 ≃ 1.3

Soft limit drives the approach to the integer value

1 2 3

z3 = E3/Etot = 1/3

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.
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Fractional Jet Multiplicity 
definition

Consider now one particle going soft	


E1=E2>Ecut and E3→0

Njet = 𝝨i Ei / EiR

 ≃ 1.1

Soft limit drives the approach to the integer value

1 2 3

z3 = E3/Etot = 1/9

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.

– 4 –
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Fractional Jet Multiplicity 
definition

Consider now one particle going soft	


E1=E2>Ecut and E3→0

Njet = 𝝨i Ei / EiR

 = 1

Soft limit drives the approach to the integer value

1 2

z3 = E3/Etot = 0

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.
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Fractional Jet Multiplicity 
definition

Consider three hard particles 	


E1=E2=E3>Ecut

Well separated clusters of particles give integer number of jets
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Fractional Jet Multiplicity 
definition
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jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
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has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
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can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
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and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we
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In Sec. 4, we perform fixed-order calculations of �
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parton matrix element as well as a 1 ! 3 splitting function approximation. We then present
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2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
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i2event
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is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij
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Fractional Jet Multiplicity 
properties

• To get non-integer behavior we need at least three particles.             
LO = O(αs2) in pQCD	



• They have to be collimated (~ within 2R) and occupy special regions 
of phase space	



• Near-integer behavior is driven by soft logarithms



Daniele Bertolini - SCET 2015

Near-integer distribution 
fixed order

Consider e+e� ! jets

q q̄ q̄q

�2� = 2� eNjet, �2+ = eNjet � 2, �3� = 3� eNjet

d�

d�2±
=

Z
d�4 T (e+e� ! 4 partons)F(�2±,�4)
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Near-integer distribution 
fixed order

Consider e+e� ! jets

�2� = 2� eNjet, �2+ = eNjet � 2, �3� = 3� eNjet

d�

d�2±
=

Z
d�4 T (e+e� ! 4 partons)F(�2±,�4)

T (e+e� ! 4 partons) ' T (e+e� ! qq̄) ·
X

k

T coll

k (1 ! 3)

k 2 {q ! ggq , q̄ ! ggq̄ , q ! q0q̄0q , q̄ ! q0q̄0q̄}

q q̄ q̄q
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Near-integer distribution 
fixed order

Consider e+e� ! jets

q q̄ q̄q

�2� = 2� eNjet, �2+ = eNjet � 2, �3� = 3� eNjet

d�

d�2±
=

Z
d�4 T (e+e� ! 4 partons)F(�2±,�4)

T (e+e� ! 4 partons) ' T (e+e� ! qq̄) ·
X

k

T coll

k (1 ! 3)

k 2 {q ! ggq , q̄ ! ggq̄ , q ! q0q̄0q , q̄ ! q0q̄0q̄}

measurement  	


function
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Near-integer distribution 
soft logarithms and rapidity divergences

g1 q g2

g1 q g2
z
1

= Eg1/Etot

! 0

z
1,2 = Eg1,2/Etot

! 0

�2+ ' z1f(z2) ' �2, (z1, z2) ' (�2, 1)

�2+ ' 2z1z2 ' �2, (z1, z2) ' (�,�)

d�/d�2+ ' 1/�2+

d�/d�2+ ' log�2+/�2+ + 1/�2+

single soft limit

double soft limit
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Near-integer distribution 
soft logarithms and rapidity divergences

1 soft, 2 collinearsc

1 soft, 2 soft
ss

1 collinear, 2 soft
cs

Λ2 Λ 1
z1

Λ2

Λ

1

z2

We get “rapidity-like” divergences like 	


in SCETII and we use rapidity-regulators	



In this case the rapidity-like variable	


is y = 1/2 log(z1/z2) 

Modes controlling near-integer behavior
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Near-integer distribution 
fixed order

d�

d�2±
= �0�(�2±)

+ 1

⇣↵s

⇡

⌘2
L1(�2±) + 0

⇣↵s

⇡

⌘2
L0(�2±) + non-singular terms

Fixed order result

• We calculated k1 and k0 (which include different color 
structures and leading dependence on zcut = Ecut / Etot)	



• Get non singular from Event2
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Near-integer distribution 
fixed order
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Near-integer distribution 
fixed order
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Fractional jet multiplicity	



• Near-integer driven by soft-logs only	



• Hybrid event-shape / jet-algorithm behavior	



• Non-additive / non-factorizable / non-global

Near-integer distribution 
fixed order
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Near-integer distribution 
Hybrid event-shape / jet algorithm

Pythia 8
Herwig!!

Q " 500 GeV
Ecut " 50 GeV
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hadron level
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Near-integer distribution 
additivity / factorizability / non-global logs

Additive Factorizable Global Logs

Yes Yes Yes Thrust

Yes Yes No Hemisphere Mass

Yes No Yes Jade Algorithm Rate

Yes No No

No Yes Yes ?

No Yes No ?

No No Yes ?

No No No fractional jet multiplicity

X

i

Ei/Q⇥(EiR � Ecut)
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Near-integer distribution 
beyond FO, collinear functions

d�

d�2±
' �0 Cq(�2±)⌦ Cq̄(�2±)

Cq,q̄(�2±) = �(�2±) +
1X

n=2

⇣↵s

⇡

⌘n n�1X

k=�1

h
(n)
k,+ Lk(�2±) + (n)

k,� Lk(�2±)
i

q̄q

q q̄



Daniele Bertolini - SCET 2015

Near-integer distribution 
beyond FO, collinear functions

d�

d�2±
' �0 Cq(�2±)⌦ Cq̄(�2±)

q̄q

xE < Ecut

Wide angle soft emissions give enhanced logarithmic 
contributions to Njet=2 cross-section

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet

would be very interesting to

measure at the LHC. As mentioned above, eN
jet

is a purely non-global observable, with the

near-integer behavior determined only by soft and not by collinear divergences. To our

knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
jet

can be used to test color coherence,

underlying event models, and pileup mitigation strategies. Furthermore, eN
jet

is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison

in this work. For new physics searches involving high-multiplicity final states, fractional
eN
jet

values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�

↵2

s

�

, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

eN
jet

(E
cut

, R) =
X

i2event

E
i

E
i,R

⇥(E
i,R

� E
cut

), (2.1)

where E
i

is the energy of particle i,

E
i,R

=
X

j2event
E

j

⇥(R� ✓
ij

), (2.2)

and ✓
ij

is the opening angle between particles i and j.

– 4 –
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Near-integer distribution 
beyond FO, collinear functions

d�

d�2±
' �0 Cq(�2±)⌦ Cq̄(�2±)

q̄q

xE < Ecut

At higher orders they also enhance fractional Njet 
cross-section

q q̄
x

In addition to analytic studies, we will test eN
jet

using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte Carlo

results confirm our analytic understanding.

Given its many features and potential applications, eN
jet
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is a purely non-global observable, with the
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knowledge, it is the only jet or event shape observable with this behavior. As such, it is

a unique probe of soft physics, and measurements of eN
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can be used to test color coherence,
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is useful basis to

compare parton shower predictions for jet substructure, and we present an initial comparison
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values interpolate between di↵erent jet multiplicities, obviating the need for exclusive

jet bins. This interpolation also makes for an interesting version of the classic “staircase”

plots for vector boson plus N jet production [30–38]. Finally, for the growing field of matrix

element/parton shower matching/merging [39–50], eN
jet

has a continuous distribution unlike

standard jet algorithms and a huge dynamic range compared to standard event shapes, so eN
jet

can be used to test whether matching/merging procedures achieve a smooth interpolation,

even in the soft regime.

The rest of this paper is organized as follows. In Sec. 2, we review the basic physics

behind eN
jet

and explain the kinematic regimes that give rise to fractional jets. In Sec. 3, we

discuss the structure of rapidity-like divergences and how they appear in the eN
jet

calculation.

In Sec. 4, we perform fixed-order calculations of �
2± at O�
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s
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, using both the full e+e� ! 4

parton matrix element as well as a 1 ! 3 splitting function approximation. We then present

a candidate factorization theorem for �
2± in Sec. 5, which includes a renormalization-group-

independent “collinear function”. In Sec. 6, we briefly discuss how to extend our results to

the LHC. We compare our analytic calculations to Pythia 8 and Herwig++ in Sec. 7, and

we conclude in Sec. 8. The appendices contain further calculational results and details.

2 Aspects of Fractional Jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of eN
jet

based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):
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jet

(E
cut

, R) =
X

i2event

E
i

E
i,R
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Near-integer distribution 
beyond FO, collinear functions

d�

d�2±
' �0 Cq(�2±)⌦ Cq̄(�2±)

Note that this contribution 	


is contained in C

x
E < Ecut

q q̄
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Near-integer distribution 
a candidate factorization theorem

d�

d�2±
' �( eNjet = 2) [Cq(�2±)⌦ Cq̄(�2±)]
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Near-integer distribution 
a candidate factorization theorem

d�

d�2±
' �( eNjet = 2) [Cq(�2±)⌦ Cq̄(�2±)]

�( eN
jet

= 2) = �
0

Hqq̄(Q,µ)Jq(Q,R, z
cut

, µ)Jq̄(Q,R, z
cut

, µ)Sqq̄(R, z
cut

, µ)

+ �non�fac

2

(Q,R, z
cut

, µ)
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Near-integer distribution 
beyond FO, improved distributions

Improved distributions	



• Include O(αs4) terms from convolutions	



• Running coupling ↵s(µ), µ = Q
p

�2±
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Near-integer distribution 
beyond FO, improved distributions
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Near-integer distribution 
beyond FO, improved distributions
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Near-integer distribution 
beyond FO, improved distributions
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Conclusions 
• Fractional jet multiplicity can be used as a novel and more 

powerful probe of jet formation. E.g. quark/gluon 
discrimination?	



• It has peculiar analytic properties. However, I showed we 
still have very good analytic control, which in principle is 
improvable. E.g. generalize to LHC case?	



• Wide dynamic range, potential test of matching/merging 
matrix-element/parton shower.                           
Potential phenomenological applications e.g. in multijet 
final states?
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Backup 
near-integer phase space configurations

Observable R
A

R
B

R
C

�
2�

q3g2g1 q3g2 g1
–

�
2+

q3g2g1 q3g2 g1

q3 g2g1 q3 g2g1

q3 g2g1

�
3�

q3g2g1 q3g2 g1
–

Table 1. Representation of the phase space configurations contributing to the near-integer jet multi-
plicities �2�, �2+, and �3�. Compared to Fig. 4, the value of eNjet is 1 unit higher, because the event
contains an additional isolated parton (not shown). For each observable, we show the corresponding
contributions from di↵erent angular regions and soft limits. Circles represent cones of radius R, large
blue dots represent energetic partons, small red dots soft partons with z < zcut. The angular regions
RA, RB , and RC are defined in Eq. (4.10).

Observable Region Expression Limit Cuts

�
2� R

A

z
1

z
2

1, 2 soft z
1

+ z
2

< z
cut

�
2� R

B

z
1

z
2

1, 2 soft z
1

+ z
2

< z
cut

�
2+

R
A

z
1

(1� z2
2

)/z
2

1 soft z
2

> z
cut

�
2+

R
B

z
2

(1� z2
1

)/z
1

2 soft z
1

> z
cut

�
2+

R
C

z
1

z
2

(2� z
2

)/(1� z
2

) 1 soft –

�
2+

R
C

z
1

z
2

(2� z
1

)/(1� z
1

) 2 soft –

�
2+

R
C

2z
1

z
2

1, 2 soft –

�
3� R

A

z
2

[1� z
1

(1� z
1

)]/[z
1

(1� z
1

)] 2 soft z
1

> z
cut

�
3� R

B

z
1

[1� z
2

(1� z
2

)]/[z
2

(1� z
2

)] 1 soft z
2

> z
cut

Table 2. Near-integer behavior of eNjet, shown for various phase space regions as depicted in Table 1.
In each case, the expression for the observable is given along with the relevant limits and phase space
cuts.
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�2� = 2� eNjet, �2+ = eNjet � 2, �3� = 3� eNjet
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Backup 
near-integer phase space configurations

Observable R
A

R
B

R
C

�
2�

q3g2g1 q3g2 g1
–

�
2+

q3g2g1 q3g2 g1

q3 g2g1 q3 g2g1

q3 g2g1

�
3�

q3g2g1 q3g2 g1
–

Table 1. Representation of the phase space configurations contributing to the near-integer jet multi-
plicities �2�, �2+, and �3�. Compared to Fig. 4, the value of eNjet is 1 unit higher, because the event
contains an additional isolated parton (not shown). For each observable, we show the corresponding
contributions from di↵erent angular regions and soft limits. Circles represent cones of radius R, large
blue dots represent energetic partons, small red dots soft partons with z < zcut. The angular regions
RA, RB , and RC are defined in Eq. (4.10).

Observable Region Expression Limit Cuts

�
2� R

A

z
1

z
2

1, 2 soft z
1

+ z
2

< z
cut

�
2� R

B

z
1

z
2

1, 2 soft z
1

+ z
2

< z
cut

�
2+

R
A

z
1

(1� z2
2

)/z
2

1 soft z
2

> z
cut

�
2+

R
B

z
2

(1� z2
1

)/z
1

2 soft z
1

> z
cut

�
2+

R
C

z
1

z
2

(2� z
2

)/(1� z
2

) 1 soft –

�
2+

R
C

z
1

z
2

(2� z
1

)/(1� z
1

) 2 soft –

�
2+

R
C

2z
1

z
2

1, 2 soft –

�
3� R

A

z
2

[1� z
1

(1� z
1

)]/[z
1

(1� z
1

)] 2 soft z
1

> z
cut

�
3� R

B

z
1

[1� z
2

(1� z
2

)]/[z
2

(1� z
2

)] 1 soft z
2

> z
cut

Table 2. Near-integer behavior of eNjet, shown for various phase space regions as depicted in Table 1.
In each case, the expression for the observable is given along with the relevant limits and phase space
cuts.
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�2� = 2� eNjet, �2+ = eNjet � 2, �3� = 3� eNjet
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Backup 
rapidity divergences
� = z1z2

1 soft: Isc(�) =

Z 1

0

dz1
z1

Z 1

0

dz2
z2

(z1z2)
�2✏ �(�� z1z2)

2 soft: Ics(�) =

Z 1

0

dz1
z1

Z 1

0

dz2
z2

(z1z2)
�2✏ �(�� z1z2)

1, 2 soft: Iss(�) =

Z 1

0

dz1
z1

Z 1

0

dz2
z2

(z1z2)
�2✏ �(�� z1z2)
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Backup 
rapidity divergences
� = z1z2

1 soft: Isc(�) = �

�1�2✏

Z 1

�1
dy⇥

⇣
�1

2

ln(1/�) < y
⌘

2 soft: Ics(�) = �

�1�2✏

Z 1

�1
dy⇥

⇣
y <

1

2

ln(1/�)

⌘

1, 2 soft: Iss(�) = �

�1�2✏

Z 1

�1
dy

s = z1z2, y = 1/2 log(z1/z2)

energy-sharing “rapidity”
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Backup 
rapidity divergences
� = z1z2

1 soft: Isc(�) = �

�1�2✏

Z 1

�1
dy⇥

⇣
�1

2

ln(1/�) < y
⌘⇣ ⌫

EJ

⌘⌘
s�⌘/2ey⌘

2 soft: Ics(�) = �

�1�2✏

Z 1

�1
dy⇥

⇣
y <

1

2

ln(1/�)

⌘⇣ ⌫

EJ

⌘⌘
s�⌘/2e�y⌘

1, 2 soft: Iss(�) = �

�1�2✏

Z 1

�1
dy

⇣ ⌫

EJ

⌘⌘
s�⌘/2|2 sinh y|�⌘

s = z1z2, y = 1/2 log(z1/z2)

energy-sharing “rapidity”

rapidity regulators

Ifull(�) = Isc(�) + Ics(�) + Iss(�)


