## Fractional Jet Multiplicity

Daniele Bertolini UC Berkeley, Lawrence Berkeley National Laboratory



## Outline

- New observable: fractional jet multiplicity
- This talk: discuss analytic predictions and unique features [DB, J.Thaler, and J.Walsh 1501.01965]

$$\widetilde{N}_{jet} = \sum_{i \in event} \frac{E_i}{E_{iR}} \Theta(E_{iR} > E_{cut})$$
$$E_{iR} = \sum_j E_j \Theta(\Delta \theta_{ij} < R)$$
$$= \text{energy in a cone around particle i}$$



Example of distributions in  $e^+e^- \rightarrow \text{jets}$ 



Example of distributions in  $e^+e^- \rightarrow \text{jets}$ 



I will describe analytically the near-integer distribution

Daniele Bertolini - SCET 2015

Collimated particles give integer number of jets



Consider three hard particles  $E_1 = E_2 = E_3 > E_{cut}$ 

Collimated particles give integer number of jets



Consider three hard particles  $E_1=E_2=E_3>E_{cut}$ 

$$\widetilde{N}_{jet} = \Sigma_i E_i / E_{iR}$$

 $\mathbf{I}$ 

Collimated particles give integer number of jets



$$\widetilde{N}_{jet} = \Sigma_i E_i / E_{iR}$$

= |/3 + |/3

Consider three hard particles  $E_1 = E_2 = E_3 > E_{cut}$ 

Collimated particles give integer number of jets



$$\widetilde{N}_{jet} = \Sigma_i E_i / E_{iR}$$

= |/3+|/3+|/3=|

Consider three hard particles  $E_1=E_2=E_3>E_{cut}$ 

Less collimated particles give fractional number of jets



Consider three hard particles  $E_1=E_2=E_3>E_{cut}$ 

Less collimated particles give fractional number of jets



$$N_{jet} = \Sigma_i E_i / E_{iR}$$

= |/2+|/3+|/2=4/3

Consider three hard particles  $E_1 = E_2 = E_3 > E_{cut}$ 

Soft limit drives the approach to the integer value

$$\widetilde{N}_{jet} = \Sigma_i E_i / E_{iR}$$
$$= 4/3 \approx 1.3$$

Consider now one particle going soft  $E_1 = E_2 > E_{cut}$  and  $E_3 \rightarrow 0$ 

Soft limit drives the approach to the integer value

$$\widetilde{N}_{jet} = \Sigma_i E_i / E_{iR}$$

$$\simeq 1.1$$

$$\simeq 1.1$$

Consider now one particle going soft  $E_1 = E_2 > E_{cut}$  and  $E_3 \rightarrow 0$ 

Soft limit drives the approach to the integer value

$$\widetilde{N}_{jet} = \Sigma_i E_i / E_{iR}$$
$$= I$$
$$z_3 = E_3/E_{tot} = 0$$

Consider now one particle going soft  $E_1 = E_2 > E_{cut}$  and  $E_3 \rightarrow 0$ 

Well separated clusters of particles give integer number of jets

Consider three hard particles  $E_1 = E_2 = E_3 > E_{cut}$ 

Well separated clusters of particles give integer number of jets



$$\widetilde{N}_{jet} = \Sigma_i E_i / E_{iR}$$

= |/2+|/2+|=2

Consider three hard particles  $E_1 = E_2 = E_3 > E_{cut}$ 

# Fractional Jet Multiplicity properties

- To get non-integer behavior we need at least three particles. LO =  $O(\alpha_s^2)$  in pQCD
- They have to be collimated (~ within 2R) and occupy special regions of phase space
- Near-integer behavior is driven by soft logarithms

Consider  $e^+e^- \rightarrow \text{jets}$ 



 $\Delta_{2-} = 2 - \widetilde{N}_{jet}, \quad \Delta_{2+} = \widetilde{N}_{jet} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{jet}$  $\frac{d\sigma}{d\Delta_{2\pm}} = \int d\Phi_4 \, \mathcal{T}(e^+e^- \to 4 \text{ partons}) \, \mathcal{F}(\Delta_{2\pm}, \Phi_4)$ 



 $\Delta_{2-} = 2 - \widetilde{N}_{jet}, \quad \Delta_{2+} = \widetilde{N}_{jet} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{jet}$ 

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta_{2\pm}} = \int \mathrm{d}\Phi_4 \, \mathcal{T}(e^+e^- \to 4 \text{ partons}) \, \mathcal{F}(\Delta_{2\pm}, \Phi_4)$$

$$\mathcal{T}(e^+e^- \to 4 \text{ partons}) \simeq \mathcal{T}(e^+e^- \to q\bar{q}) \cdot \sum_k \mathcal{T}_k^{\mathrm{coll}}(1 \to 3)$$

$$k \in \{q \to ggq, \bar{q} \to gg\bar{q}, q \to q'\bar{q}'q, \bar{q} \to q'\bar{q}'\bar{q}\}$$



 $\Delta_{2-} = 2 - \widetilde{N}_{jet}, \quad \Delta_{2+} = \widetilde{N}_{jet} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{jet}$ 

## Near-integer distribution

soft logarithms and rapidity divergences



## Near-integer distribution

soft logarithms and rapidity divergences

Modes controlling near-integer behavior



Fixed order result

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta_{2\pm}} = \sigma_0 \delta(\Delta_{2\pm}) \\ + \kappa_1 \left(\frac{\alpha_s}{\pi}\right)^2 \mathcal{L}_1(\Delta_{2\pm}) + \kappa_0 \left(\frac{\alpha_s}{\pi}\right)^2 \mathcal{L}_0(\Delta_{2\pm}) + \text{non-singular terms}$$

- We calculated  $k_1$  and  $k_0$  (which include different color structures and leading dependence on  $z_{cut} = E_{cut} / E_{tot}$ )
- Get non singular from Event2

#### Event2 comparison:



#### Event2 comparison:



Daniele Bertolini - SCET 2015

Fractional jet multiplicity

- Near-integer driven by soft-logs only
- Hybrid event-shape / jet-algorithm behavior
- Non-additive / non-factorizable / non-global

### Near-integer distribution *Hybrid event-shape / jet algorithm*



## Near-integer distribution

additivity / factorizability / non-global logs

| Additive | Factorizable | Global Logs |                                             |  |
|----------|--------------|-------------|---------------------------------------------|--|
| Yes      | Yes          | Yes         | Thrust                                      |  |
| Yes      | Yes          | No          | Hemisphere Mass                             |  |
| Yes      | No           | Yes         | Jade Algorithm Rate                         |  |
| Yes      | No           | No          | $\sum_{i} E_i / Q \Theta(E_{iR} - E_{cut})$ |  |
| No       | Yes          | Yes         | ?                                           |  |
| No       | Yes          | No          | ?                                           |  |
| No       | No           | Yes         | ?                                           |  |
| No       | No           | No          | fractional jet multiplicity                 |  |



$$C_{q,\bar{q}}(\Delta_{2\pm}) = \delta(\Delta_{2\pm}) + \sum_{n=2}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{k=-1}^{n-1} \left[\kappa_{k,+}^{(n)} \mathcal{L}_k(\Delta_{2\pm}) + \kappa_{k,-}^{(n)} \mathcal{L}_k(\Delta_{2\pm})\right]$$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta_{2\pm}} \simeq \sigma_0 \, C_q(\Delta_{2\pm}) \otimes C_{\bar{q}}(\Delta_{2\pm})$ 



Wide angle soft emissions give enhanced logarithmic contributions to  $\widetilde{N}_{jet}$ =2 cross-section

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta_{2\pm}} \simeq \sigma_0 \, C_q(\Delta_{2\pm}) \otimes C_{\bar{q}}(\Delta_{2\pm})$ 



At higher orders they also enhance fractional  $\widetilde{N}_{jet}$  cross-section

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta_{2\pm}} \simeq \sigma_0 \, C_q(\Delta_{2\pm}) \otimes C_{\bar{q}}(\Delta_{2\pm})$ 



Note that this contribution is contained in C

### Near-integer distribution *a candidate factorization theorem*

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta_{2\pm}} \simeq \sigma(\widetilde{N}_{\mathrm{jet}} = 2) \left[ C_q(\Delta_{2\pm}) \otimes C_{\bar{q}}(\Delta_{2\pm}) \right]$$

### Near-integer distribution *a candidate factorization theorem*

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta_{2\pm}} \simeq \sigma(\widetilde{N}_{\mathrm{jet}} = 2) \left[ C_q(\Delta_{2\pm}) \otimes C_{\bar{q}}(\Delta_{2\pm}) \right]$$

$$\downarrow$$

$$\sigma(\widetilde{N}_{\mathrm{jet}} = 2) = \sigma_0 H_{q\bar{q}}(Q,\mu) J_q(Q,R,z_{\mathrm{cut}},\mu) J_{\bar{q}}(Q,R,z_{\mathrm{cut}},\mu) S_{q\bar{q}}(R,z_{\mathrm{cut}},\mu)$$

$$+ \sigma_2^{\mathrm{non-fac}}(Q,R,z_{\mathrm{cut}},\mu)$$

Improved distributions

- Include  $O(\alpha_s^4)$  terms from convolutions
- Running coupling  $\alpha_s(\mu), \mu = Q\sqrt{\Delta_{2\pm}}$







Daniele Bertolini - SCET 2015

## Conclusions

- Fractional jet multiplicity can be used as a novel and more powerful probe of jet formation. E.g. quark/gluon discrimination?
- It has peculiar analytic properties. However, I showed we still have very good analytic control, which in principle is improvable. E.g. generalize to LHC case?
- Wide dynamic range, potential test of matching/merging matrix-element/parton shower.
   Potential phenomenological applications e.g. in multijet final states?

## Backup

near-integer phase space configurations

$$\Delta_{2-} = 2 - \widetilde{N}_{jet}, \quad \Delta_{2+} = \widetilde{N}_{jet} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{jet}$$

| Observable    | $\mathcal{R}_A$ | $\mathcal{R}_B$                                                 | $\mathcal{R}_C$                                                                                                                                                                                                         |
|---------------|-----------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Delta_{2-}$ |                 |                                                                 | _                                                                                                                                                                                                                       |
| $\Delta_{2+}$ |                 | $ \begin{array}{c}  g_2 \\                                    $ | $ \begin{array}{c} g_1 & g_2 \\  \bullet & \bullet \\ \end{array} $ $ \begin{array}{c} g_1 & g_3 & g_2 \\  \bullet & \bullet \\ \end{array} $ $ \begin{array}{c} g_1 & g_3 & g_2 \\  \bullet & \bullet \\ \end{array} $ |
| $\Delta_{3-}$ |                 |                                                                 | _                                                                                                                                                                                                                       |

## Backup

near-integer phase space configurations

$$\Delta_{2-} = 2 - \widetilde{N}_{jet}, \quad \Delta_{2+} = \widetilde{N}_{jet} - 2, \quad \Delta_{3-} = 3 - \widetilde{N}_{jet}$$

| Observable    | Region          | Expression                       | Limit      | Cuts                      |
|---------------|-----------------|----------------------------------|------------|---------------------------|
| $\Delta_{2-}$ | $\mathcal{R}_A$ | $z_1 z_2$                        | 1, 2  soft | $z_1 + z_2 < z_{\rm cut}$ |
| $\Delta_{2-}$ | $\mathcal{R}_B$ | $z_1 z_2$                        | 1, 2  soft | $z_1 + z_2 < z_{\rm cut}$ |
| $\Delta_{2+}$ | $\mathcal{R}_A$ | $z_1(1-z_2^2)/z_2$               | 1 soft     | $z_2 > z_{\rm cut}$       |
| $\Delta_{2+}$ | $\mathcal{R}_B$ | $z_2(1-z_1^2)/z_1$               | 2  soft    | $z_1 > z_{\rm cut}$       |
| $\Delta_{2+}$ | $\mathcal{R}_C$ | $z_1 z_2 (2 - z_2) / (1 - z_2)$  | 1 soft     | _                         |
| $\Delta_{2+}$ | $\mathcal{R}_C$ | $z_1 z_2 (2 - z_1) / (1 - z_1)$  | 2  soft    | _                         |
| $\Delta_{2+}$ | $\mathcal{R}_C$ | $2z_1z_2$                        | 1, 2  soft | _                         |
| $\Delta_{3-}$ | $\mathcal{R}_A$ | $z_2[1-z_1(1-z_1)]/[z_1(1-z_1)]$ | 2  soft    | $z_1 > z_{\rm cut}$       |
| $\Delta_{3-}$ | $\mathcal{R}_B$ | $z_1[1-z_2(1-z_2)]/[z_2(1-z_2)]$ | 1 soft     | $z_2 > z_{ m cut}$        |

## Backup rapidity divergences

 $\Delta = z_1 z_2$ 

1 soft: 
$$I_{sc}(\Delta) = \int_{0}^{\infty} \frac{\mathrm{d}z_{1}}{z_{1}} \int_{0}^{1} \frac{\mathrm{d}z_{2}}{z_{2}} (z_{1}z_{2})^{-2\epsilon} \,\delta(\Delta - z_{1}z_{2})$$
  
2 soft:  $I_{cs}(\Delta) = \int_{0}^{1} \frac{\mathrm{d}z_{1}}{z_{1}} \int_{0}^{\infty} \frac{\mathrm{d}z_{2}}{z_{2}} (z_{1}z_{2})^{-2\epsilon} \,\delta(\Delta - z_{1}z_{2})$   
1, 2 soft:  $I_{ss}(\Delta) = \int_{0}^{\infty} \frac{\mathrm{d}z_{1}}{z_{1}} \int_{0}^{\infty} \frac{\mathrm{d}z_{2}}{z_{2}} (z_{1}z_{2})^{-2\epsilon} \,\delta(\Delta - z_{1}z_{2})$ 

### Backup rapidity divergences

$$\Delta = z_1 z_2$$
 energy-sharing "rapidity"  
 $s = z_1 z_2, \quad y = 1/2 \log(z_1/z_2)$ 

1 soft: 
$$I_{sc}(\Delta) = \Delta^{-1-2\epsilon} \int_{-\infty}^{\infty} dy \,\Theta\left(-\frac{1}{2}\ln(1/\Delta) < y\right)$$
  
2 soft:  $I_{cs}(\Delta) = \Delta^{-1-2\epsilon} \int_{-\infty}^{\infty} dy \,\Theta\left(y < \frac{1}{2}\ln(1/\Delta)\right)$   
1, 2 soft:  $I_{ss}(\Delta) = \Delta^{-1-2\epsilon} \int_{-\infty}^{\infty} dy$ 

### Backup rapidity divergences

$$\Delta = z_1 z_2$$
 energy-sharing "rapidity"  
 $s = z_1 z_2, \quad y = 1/2 \log(z_1/z_2)$ 

$$I_{\text{full}}(\Delta) = I_{sc}(\Delta) + I_{cs}(\Delta) + I_{ss}(\Delta)$$