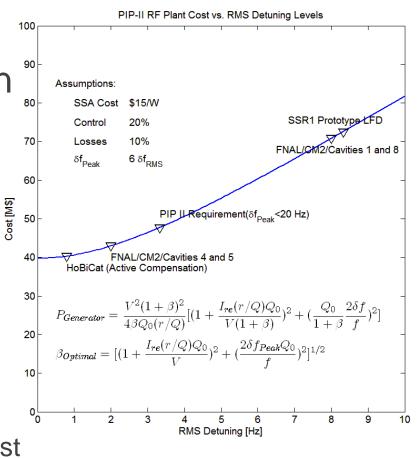


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Superconducting RF: Resonance Control


Warren Schappert PIP-II Machine Advisory Committee 10 March 2015

SRF Cavity Detuning

- SRF cavity cells often formed from thin (2-4mm) sheets of pure niobium to allow them to be cooled below superconducting transition temperature
 - Thin walls make cavities susceptible to detuning from vibration
 - Detuned cavities require more RF power to maintain accelerating gradient
 - Providing sufficient RF reserve power to overcome cavity detuning increases both capital and operational cost of machine
- Controlling cavity detuning critical for current generation of machines, (LCLS-II, PIP-II, ERLs, etc.) that employ very narrow bandwidth cavities
 - For machines with very narrow bandwidth cavities, e.g. ERLs, detuning can be the major cost driver for the entire machine

Cost of Cavity Detuning

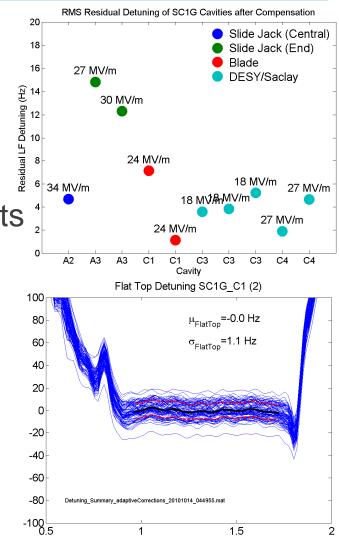
- Detuned cavities require more RF power to maintain constant gradient
- PEAK detuning drives the RF costs
 - Beam will be lost if RF reserve is insufficient to overcome PEAK detuning
 - Providing sufficient reserve increases both the capital cost of the RF plant and the operating cost of the machine

Controlling Cavity Detuning

- Cavities may be detuned by either deterministic sources or nondeterministic sources
 - Deterministic sources include
 - Radiation pressure on cavity walls (Lorentz Force)
 - Non-deterministic sources include
 - Cavity vibrations driven by external noise sources
 - Helium pressure fluctuations
- Cavity detuning can be controlled using either passive or active measures
 - Passive measures include
 - Suppressing external vibration sources
 - Reducing cavity sensitivity to sources of detuning, e.g. df/dP, LFD,...
 - Active measures include
 - Sensing cavity detuning in real-time and using piezo or other actuators to actively cancel detuning
 - Deterministic sources may be cancelled using feed-forward
 - Non-deterministic sources require feed-back

Controlling Detuning in the PIP-II Cavities

- PIP-II design calls for narrow bandwidth (f_{1/2} ≅30 Hz) cavities operating in pulsed mode
 - Narrow bandwidth makes cavities susceptible to vibration induced detuning
 - Pulsed mode LFD can excite vibrations
- PEAK detuning of PIP-II cavities must be limited to 20 Hz or less
 - PIP-II cavities will require active detuning compensation of both LFD and microphonics during routine operation
 - Will require combination of
 - best LFD compensation achieved to date
 - AND best active microphonics compensation achieved to date
 - AND 24/7 operation over hundreds of cavities for several tens of years
- No examples of large machines that require active detuning control during routine operation currently exist


	Ν		Q ₀	r/Q	E	L Effective	Voltage	Current	Control	Losses	P _{Beam}
		MHz	10 ⁹	Ω	MV/m	m	MV	mA	%	%	kW
HWR	8	162.5	5.0	275	9.7	0.21	2.01	2	20	10	4.02
SSR1	16	325	6.0	242	10.0	0.21	2.05	2	20	10	4.10
SSR2	35	325	8.0	296	11.4	0.44	4.99	2	20	10	9.99
LB650	33	650	15.0	375	15.9	0.75	11.86	2	20	10	23.72
HB650	24	650	20.0	609	17.8	1.12	19.92	2	20	10	39.84

3/10/2015

🛟 Fermilab

LFD Compensation at FNAL

- Adaptive feed-forward LFD compensation system developed at FNAL for ILC cavities
- System tested with four distinctly different cavity designs during S1G tests at KEK in 2010
 - Uncompensated detuning ranged between several tens to several hundreds of Hz depending on the desig
 - Compensated detuning limited to <20 I in all four cavity types
- System is in routine use in NML/CM2 and HTS

3/10/2015

🛟 Fermilab

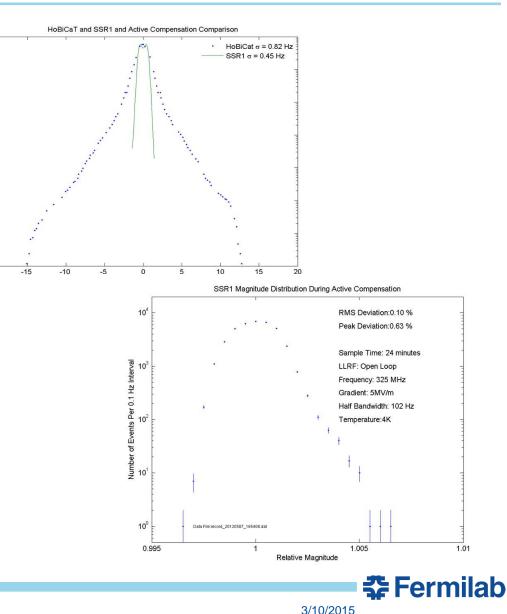
Microphonics Compensation at FNAL

10

10

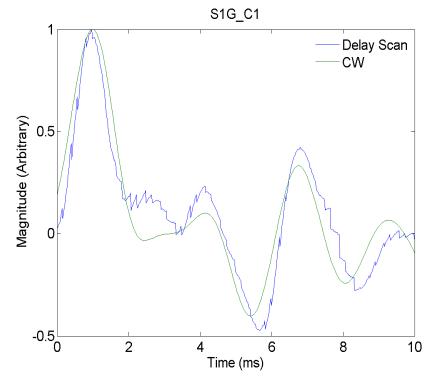
10

104


10²

10

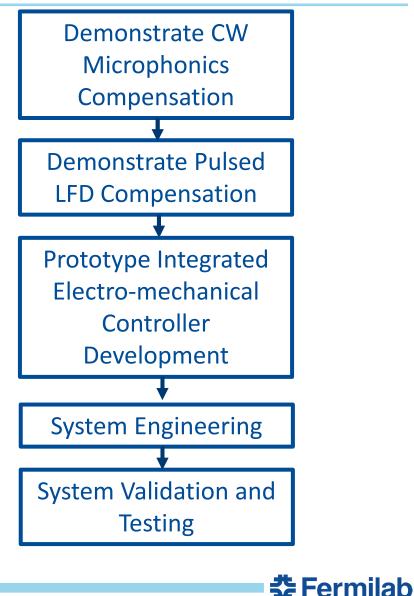
10⁰ ⊾ -20


Number of Events per Unit Detuning (Arbitrary)

- 1.3 GHz elliptical cavities
 - Damp individual mechanical resonance lines by 15 dB
- 1st SSR1 prototype
 - Fixed frequency/ fixed amplitude RF with piezo feedback
 - Frequency stability
 - 0.45 Hz RMS
 - Magnitude stable to
 - 0.10% RMS
 - 0.63% Peak over 20 minutes

Adaptive Feedforward LFD Compensation

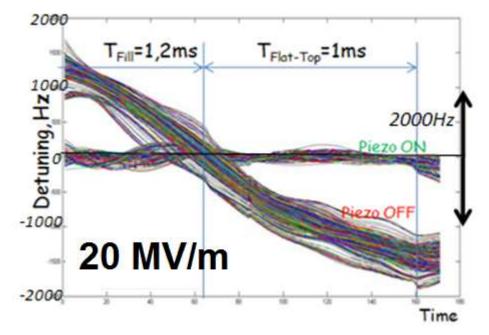
- Learning phase
 - Apply a series of short stimulus pulses to the piezo at different delays with respect to the RF Pulse,S(t_{Piezo},n_{Pulse})
 - Measure the detuning response of the cavity during the flattop, R(t_{Flattop},n_{Pulse})
 - Calculate the transfer function, T = (S^TS)⁻¹(S^TR)
 - Equivalent to CW measurement of piezo impulse response
- Compensation Phase
 - Measure the detuning during the flattop, $D(t_{Flattop})$
 - Determine piezo pulse required to cancel out detuning,
 - $P = -(T^T T)^{-1}(T^T D)^{-1}$
 - Iterate to suppress any residual detuning



3/10/2015

🛟 Fermilab

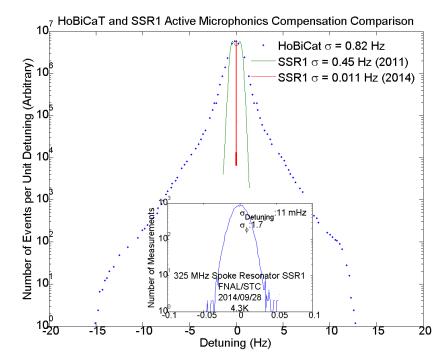
Detuning Control Program for PIP-II


- Demonstration of feasibility is current focus
- Focus must shift at some point to engineering a robust integrated electro-mechanical control system
- Reliable operation can only be ensured by extensive program of testing of both components and integrated system

3/10/2015

Feasibility of LFD Compensation for PIP-II

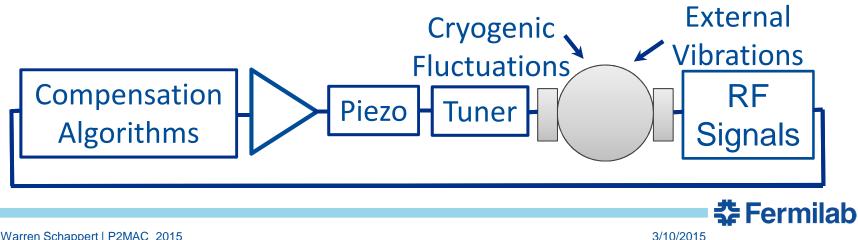
- LFD compensation measurements using previous SSR1 prototype
 - Short test
 - Good results but do not meet PIP-II specs
- SSR1 Pulsed mode studies with prototype tuner and prototype coupler will commence shortly
 - Slower fill
 - Improved understanding



		Detuning					
		Uncompe	Compensated				
	Gradient	Flattop	Full Pulse	Flattop			
	MV/m	Hz	Hz	Hz			
g	13	450	900	30			
3	22	1450	2500	75			

Feasibility of Microphonics Compensation for PIP-II

- Very encouraging results from recent test of SSR1 prototype in STC provide reason for CAUTIOUS optimism
 - σ_{Detuning}=11 mHz in open loop RF over 2 hour period
 - Piezo but no slow tuner
 - Narrow bandwidth power coupler
 - Resonance frequency stabilized using a combination of
 - Feed-forward LFD compensation
 - Fast feed-back on forward/probe phase
 - Slow feedback on detuning
 - Synchronous down-conversion
 - Almost two orders of magnitude improvement compared with best previously published results (HoBiCaT)
 - More than an order of magnitude compared to best previous results at FNAL
- More tests in immediate future using prototype tuner and power coupler


Integrated Electro-Mechanical Controller

- Measure SSR1 mechanical transfer functions
 - Detuning response to mechanical and LFD excitations as a function of frequency
- Extract low order approximation to transfer mechanical functions
 - Minimal State Space Realization (MSSR) algorithm of Kalman and Ho
- Construct optimal coupled electro-mechanical filters and controllers from low-order transfer functions
 - Kalman filter
 - Linear Quadratic Gaussian Regulator
 - Recursive, weighted, least-squares fit at each point in time minimizes quadratic cost function that depends on transfer-functions and noise covariance

System Engineering for PIP-II

- Detuning control crosses boundaries between divisions and between disciplines
 - Robust system required for machine operation
- Focus must shift need to shift towards engineering highreliability system
 - Integration of algorithms with LLRF control system
 - Will require extensive testing of all hardware, firmware, software

Component and Integration Testing

- EXTENSIVE component and integration testing **REQUIRED** for reliable operation
- Experience at FNAL with blade tuner for ILC cavities

2000

Detuning (Hz)

1000

-1000 - 800

-1000

-2000

-3000

-4000

5

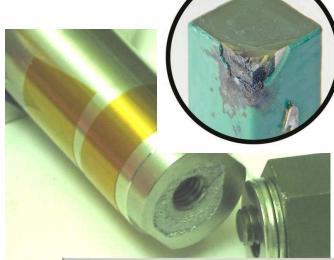
10

Time (h)

15

20

25

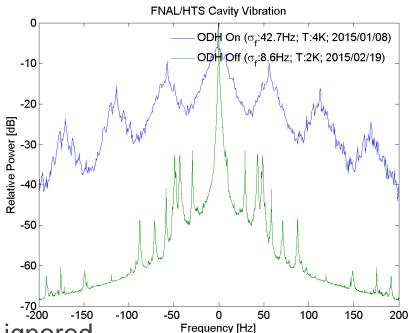

-2000

-3000

-4000└ -5

n

- EVERYTHING THAT CAN GO WRONG WILL GO WROMG
- Experience at other labs
 - MSU
 - JLab
 - SNS
 - Cornell
 - HoBiCaT



Cross-disciplinary Challenges

- Minimizing cavity detuning requires careful optimization across entire machine
 - Cavity design, cryomodule design, RF plant, cryogenic system design, civil engineering
 - Cross-disciplinary challenges may be more daunting than technical challenges
- Large potential costs if any aspect ignored
 - Small design changes may have large impact on cavity detuning
 - Cost of fixing microphonics afterwards could be very high
- Some structure within PIP-II organization will be required to coordinate effort amongst groups and disciplines
 - Education and communication
 - Vibration related reviews

🚰 Fermilab

3/10/2015

Looking Forward

- Upcoming tests of SSR1 offer opportunity to
 - Finalize CW algorithms
 - Investigate pulsed mode operation
 - Measure expected RF and performance parameters
- Focus must then shift to integration of algorithms into an integrated electro-mechanical control system
 - Will require close collaboration between TD/RC and AD/LLRF groups
- Robust system will require careful system engineering and extensive testing of all hardware, firmware and software
- Need to arrive at consensus on mechanism(s) within PIP-II organization to coordinate detuning control efforts

5 Fermilab

3/10/2015

Conclusions

- Controlling cavity detuning will be critical for successful operation of PIP-II because of narrow cavity bandwidths (f_{1/2}~ 30 Hz)
 - Narrow bandwidths would be challenging even with CW operation alone
 - Pulsed mode operation brings significant additional complications
- All possible passive measures must be exploited but active control will still be required
 - Will require both best LFD and best microphonics compensation achieved to date operating reliably over many cavities and many years
 - Early test results provide reason for **CAUTIOUS** optimism
 - There are no existing examples of large machines that require active control of detuning during routine operation
- Cross-disciplinary challenges may be more difficult to solve than technical challenges (which are still considerable)
 - Minimizing cavity detuning requires optimization of entire machine
 - Will require active coordination across divisions and across disciplines