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* R&D Scope and plans
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— India
— Colorado State University
— Berkeley (maybe)

« Current system development

— Master Oscillator and Reference line

— Controller module
« System on module

« Conclusions
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PXIE Low Level RF Group Involvement
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PXIE will address the address/measure the following:

— LEBT pre-chopping

— Vacuum management in the LEBT/RFQ region Collaborators

— Validation of chopper performance ANL: HWR

— Bunch extinction LBNL:LEBT, RFQ

— MEBT beam absorber SNS: LEBT

— MEBT vacuum management BARC: MEBT, SSR1

— Operation of HWR in close proximity to 10 kW absorber

— Operation of SSR with beam, including resonance control and LFD compensation
in pulsed operations

— Emittance preservation and beam halo formation through the front end
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R&D Deliverables

Reference Design Report Q1FY15
HB650 Cavity (8, TESLA shape) Vertical Test (US) Q4FY15
HB650 Dressed Cavity (3) Horizontal Test (US) Q4FY16
HB650 Dressed Cavity (4) Horizontal Test (India) Q2FY17
LB650 Dressed Cavity (3) Horizontal Test (US) Q3FY17
LB650 Dressed Cavity (2) Horizontal Test (India) Q3FY17
HB650 Cryomodule Design (US, India) Q2FY16
HB650 Cryomodule Power Test (US) Q4FY17
650 MHz/30 kW rf Power Test (India) Q4FY15
SSR1 Dressed Cavity (2) Horizontal Test (India) Q4FY15
SSR1 Cryomodule Power Test (U.S.) Q3FY17
SSR2 Dressed Cavity (2) Horizontal Test (India) Q2FY17
SSR2 Cavity (2) Vertical Test (US) Q4FY17
SSR2 Dressed Cavity (1) Horizontal Test (US) Q4FY17
325 MHz/10 kW rf Power Test (India) Q4FY15
650 MHz Horizontal Test Stand (US & India) Q3FY16
HWR Cryomodule Test with Beam Q2FY18
Front End Systems Test (warm components) Q3FY16 e E I I)
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LLRF Systems needed to meet R&D Goals

« 325 MHz Horizontal test stand

— Support for CW and pulsed mode operation
— Operational now with some upgrades planed

« 650 MHz Horizontal test stand

— Support for CW and pulsed mode operation
— Supplied by India Q3FY16

« PXIE

— Master Oscillator and Phase Reference distribution line
« 162.5 MHz & 325 MHz (In construction phase)

— RFQ -162.5 MHz (Q4FY15)
« 2 RF amplifier system

— Buncher - 3 cavities - 162.5 MHz (FY15)
— Half Wave Resonators - 8 cavities @162.5 MHz (FY17)
— SSR1 - 8 cavities @ 325 MHz (FY17)

— Kicker waveform generator
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Collaboration with India on LLRF

 The plan
— Colleagues from BARC will develop the 650 MHz test stand including LLRF
— They will deliver 50% of the LLRF systems in PIP-II
— They will send a LLRF engineer to work with our team for two years

» Final systems must be hardware, firmware and software

compatible to avoid operational risk
— this probably means identical systems in the end

« The “how to” for this collaboration effort needs development
— common development platforms are a must
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Collaboration with other labs
« We are involved in the LCLS-II LLRF design effort as well as
testing of cavities at CMTF

* We hope to leverage off of this effort and possibly collaborate
with this same group for PIP-II
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Resonance Control Effort for the PXIE RFQ

Tuning controlled by adjusting the vane and wall temperatures

Initial focus is on temperature control of the water at the entrance of the RFQ
—  Began modeling the thermal properties of the RFQ (including RF heating) and the dynamics of the water cooling system

—  Conducting initial control studies to ensure that the system response requirements can be met for trip recovery, cold starts, and
both CW and pulsed operation

Will later re-focus efforts on LLRF and resonance control
—  Dynamic tuning by adjusting the vane temperature
—  Low duty pulsed operation: vary the RF pulse width to adjust vane heating
— Resonance controller to interface with water system
The full team led by Jim Steimel: Curtis Baffes, Maurice Ball, Sandra Biedron*, Daniel Bowring,
Brian Chase, Jerzy Czajkowski, Auralee Edelen*, Jonathan Edelen”, Stephen Milton*
*Colorado State University contract
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2-D thermal simulation of temperature gradient induced in the
vane due to the temperature rise of the water in the cooling
channel

Brian Chase | P2MAC_2015

Uncompensated temperature at the entrance to the RFQ
as a function of time after a step change in the cold water
control valve (occurs at t=50 as indicated by the red line)
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PIXIE RF Stations D
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PIP-Il LLRF 4 Cavity LLRF Rack Layout

Down converters for

PXIE are done

Controller, PZT amp,
stepper motor controller,

Up converter
in design stage
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System on Module Multi-cavity Field Controller (SOM-MFC)
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System on Chip Multi-channel Field Controller
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SOC Data Acquisition Software / Firmware Model
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Nios C Application
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Control Registers

254 write-only
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Linux Application

Verilog sample
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CLOCK T
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&
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Send data buffer to
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800 Mbit/s
data

transmission
has been
demonstrated
Data out with
parameter
=== Ethernet | updates
| ———m=—
(—
—— Parameter
updates from
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Phase Reference Lines (162.5, 325, 650 ,1300 MH2)

PIP-Il RF Phase Reference System

Phase Averaging

1300 MHz Distribution

162.5 MHz Temperature
Controlled Master Oscillator
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Multi-frequency Phase References and Local Oscillators
We are building up the first sections for PXIE
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Details of First 162.5 MHz RF Section

1300 MHz Reference from 1300MHz Temperature Controlled Rack
162.5 MHz
Temperature Controlled 325 MHz
Master Oscillator Temperature Controlled
Rack Rack
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Primary Technical Risks

« Resonance Control for 5 new cavity designs
— Lorentz Force Detuning compensation for narrow bandwidth cavities operated
in pulsed mode
— New cavity designs with new mechanical properties
— ~20 Hz half BW with expected 420 Hz Lorentz Force Detuning in SSR1 (SSR1
is now pulsed)

« Development of the LEBT/MEBT Chopper Program Module

— Wideband beam-based learning algorithm

« Regulation of amplitude and phase is 103 with 10-* regulation
during the pulse using beam based feedback
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Regulation of beam energy to ~1e-4

« Strategy- regulate cavity fields to 0.1% and 0.1 deg.

* Measure beam energy in the bends with BPMs and time of
flight

« Correct energy intra-pulse and learn pulse to pulse

* Question — can the feedback system servo loop control
disturbances to the 1e-4 level?

— Pgain =500, Igain =9e6 HB650 with 64 kW PA
— feedforward turned off ) auto Cavity Field
— beam loading starting at 6800us el ==
« Answer — yes, short term o ]
— If detuning is not more than 1 half £ 2| T
cavity BW S o)
— if beam based calibration can |

6400 6500 6600 6700 _ 6800 _ 6300 7000 7100

work at this level
2% Fermilab
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Regulation of beam energy to ~1e-4

« Question — How fast can the RF respond to a gradient

change request?

— For the HB650 cavities driven at the full 60 kW with 20 Hz detuning and beam
|Oad | ng (W auto Cavity Field

2066 F T

« a 0.1% takes about 20 microsecond o] -
— For the HB650 cavities driven at the full ]

60 kW with 20 Hz detuning and beam loading
* a 0.1% takes about 4 microsecond
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* Question — Do we have enough power overhead and have

we optimized for cryo loading?

— more power is a conservative option (I’'m not opposed )
— Optimizing for cryo, RF PA design choices, loaded Qs is something that will
take time and may require more experience with the new cavities
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Conclusions

19

The LLRF Group is building and install for the R&D effort at

PXIE to cover the RFQ and Buncher cavities
— Development of a next generation system controller card
— Development of the multi-frequency reference
— RFQ resonance control

SRF Resonance control collaboration is gearing up effort as

cavities become available for test

— @Good early results to be transformed into a robust operational system
— A good compromise point between pulsed and CW operation to be determined
for RF power and loaded Qs for all cavity types

Collaboration with India will get off the ground this year with
an engineer appointed to LLRF for 2 years

Real testing is just starting with SSR1 coupler / tuner / PA
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