

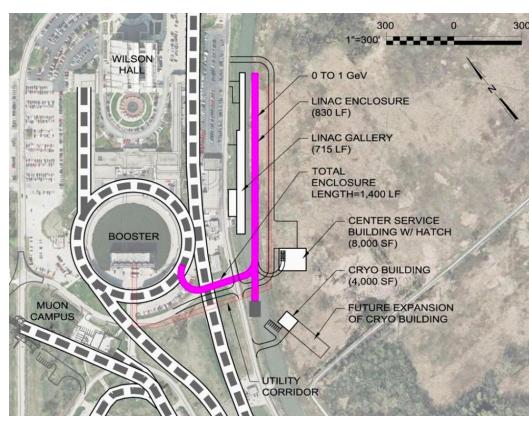
Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

PIP-II Beam Instrumentation – Status and R&D

Vic Scarpine
PIP-II Machine Advisory Committee
9-11 March 2015

Outline

- Scope
- Measurements and Instruments
- PXIE LEBT and MEBT Instrument Status
- Beam Diagnostics R&D non-invasive beam profiling
 - Laser profiling for H- beams
 - Electron beam profiler for proton beams
- Risks and challenges


Scope

The scope of beam diagnostics are to identify and provide the instrumentation systems necessary to successful *commission*, characterize and operate all PIP-II sub-accelerators.

- Present focus is development of instrumentation for PXIE
- PIP-II focus on pulsed operation with an eye toward CW
 - Impact on instrumentation choices

Accelerator instrumentation sections:

- Ion source & LEBT
- MEBT
- Superconducting linac
- Transport lines
- Rings

PIP-II Beam Diagnostic Measurements and Proposed Instruments

- Beam current
 - DCCTs, Toroids, High-Bandwidth Resistive Wall Current Monitors (RWCM)
- Beam transverse position
 - Warm and cold BPMs
- Beam energy
 - BPM phase, movable BPM
- Beam transverse profiles
 - Wire scanners, laser wires, IPM, electron beam profiler, isolated beam scrapers

Large variety of instruments needed for PIP-II

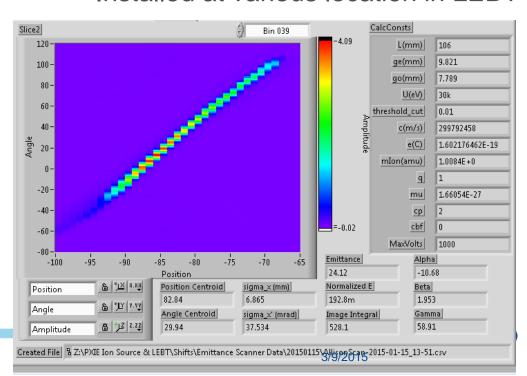
Develop many at PXIE

- Beam transverse emittance
 - Allison scanner, slit-slit or slit-wire scanners, quadrupole scans
- Beam longitudinal profiles
 - Fast Faraday Cup, picosecond laser wires
- Beam halo
 - Vibrating wire, high-gain wires, laser wire, apertures, diamond detectors
- Beam loss monitoring
 - Ion chambers, neutron detectors, diamond detector
- Chopped beam extinction efficiency
 - High-Bandwidth RWCM, single (few) particle detection

Green = developed or under development for PXIE / PIP-II

Orange = developed or tested at other Fermilab accelerators

LEBT Beam Diagnostics Status – also see earlier talk "PXIE Warm Front-end Status"


Much of past year has been in the development and support of the PXIE LEBT

Beam Current Measurements

- DCCT, toroid and isolated electrodes
- Beamline hardware installed
- VME-based readout electronics under development
 - Will allow for improved signal processing

Beam Emittance

- Water-cooled Allison scanner operational
- Installed at various location in LEBT

MEBT Beam Diagnostics Status – also see earlier talks on "Warm Front-end Concepts and Status"

Focus on RFQ commissioning:

- Beam current measurements
 - Toroids, isolated beam dump purchased or have
 - Integrate into VME-based front-end under development
- Beam position and phase
 - Warm BPMs designed and being fabricated
 - DAQ system under development based on previous design
- Beam transverse profiles
 - Electrically isolated beam scrapers prototype under test
 - Integrate into VME-based front-end under development
- Beam energy
 - Time-of-flight via movable BPM under design
 - for RFQ/MEBT commissioning only
- Longitudinal bunch shape
 - High-bandwidth Faraday Cup > 6 GHz BW under design

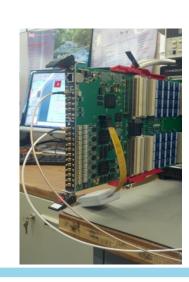
Status – Warm and Cold BPM Development

Warm and cold BPMs pickups prototyped

Requirements:

	Accuracy	Precision
Position, µm	10	30
Phase, degrees of 162.5 MHz	0.05	0.2
Relative intensity, %	1	3

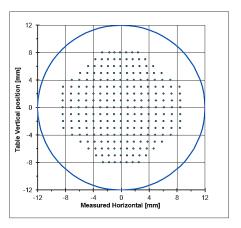
HWR/SSR1 Cold BPM Prototype (ANL)


Bunch-by-bunch measurements in MEBT chopper region - oscilloscopes

Synchronize signal detection

Allows for lock-in detection for laser wire

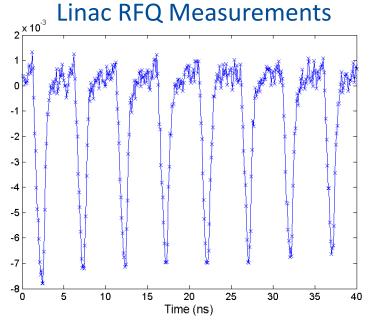
DAQ with FPGA-based electronics for CW and pulsed beam

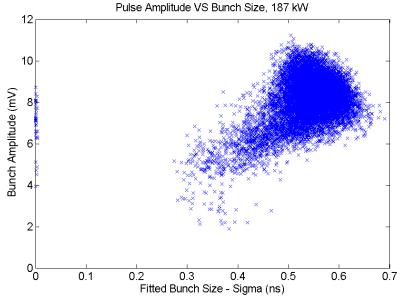

- 12 channels
- 14 bits, 250 MSPS
- Different operational modes

Stretched wire mapping

Simulating low-β corrections

Four button Warm BPM





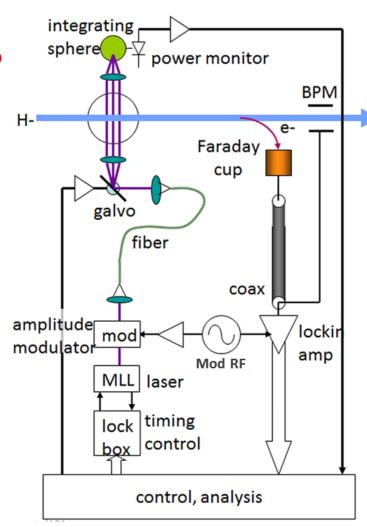
Longitudinal Bunch Length – Fast Faraday Cup

- Designed by SNS
 - Beam damage at HINS (2.5 MeV protons)
 - We are redesigning
- Tested at HINS and Linac
- High Bandwidth (> 6 GHz)

R&D – Laser Diagnostics Development – Low-power transverse and longitudinal laser wire

$$H^{-} + \gamma \rightarrow H^{0} + e^{-}$$

162.5 MHz, psec mode-locked laser (MML) used to measure both transverse and longitudinal profiles

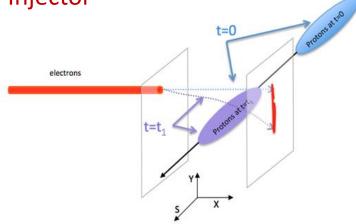

- Laser rep-rate is locked to accelerator RF
- Amplitude modulate laser pulses
- Distribute modulated laser pulses via fibers
- Measure profiles by either:
 - Collection of electrons
 - Use BPM as reduced-beam pickup
 - Allows laser monitor to fit between cryomodules
- Narrow-band lock-in amp detects modulated signal

Questions:

- What are the noise issues?
- What are the power nonlinear limits in the fiber?
- What signal-to-noise ratios and averaging times are practical?
- What are the accelerator systematics?

Status

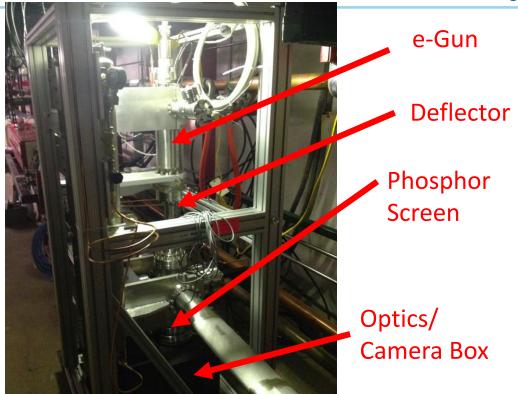
- Test system at PXIE infrastructure development underway
- Laser design/development underway
- System commissioning end of 2016



R. Wilcox, LBNL

R&D – e-Beam Profiler (EBP) for Main Injector

- Electron beam deflection technique (working implementation at SNS)
- Prototype installed into Main Injector


Electron beam is deflected by electric and magnetic fields of the protons

Deflection vs. impact parameter provides information about the proton beam transverse profile

- e Beam Profiler will utilize a raster scan analysis
 - Potentially provides the transverse profile as a function of longitudinal position for a single bunch
 - Possible to measure head / tail profiles (split bunch in half)
 - Slow part of scan is across beam using one turn per data point
 - Resolution depends on
 - Size of e beam (100-200 um) relative to p beam (Beta is large)
 - · Linearity of deflecting fields
 - External magnetic fields
 - Synchrotron oscillations
 - Can average over many bunches if not raster scanning
 - Sit at single longitudinal point

R&D – e-Beam Profiler for Main Injector - Status

Electron Gun (upstream of Q622)

- Gun has been installed
- Mumetal shielding in place
- Tunnel cable terminations mostly done

- HV distribution boxes being worked on
- Deflector power supply being worked on
- MI-62 cable terminations not yet done
- Plan to install HV box in tunnel this summer

Plan to begin commissioning after summer shutdown

PIP-II Preliminary Estimates of Instrument by Location

Instruments only up to Booster

	Current	Position/ Phase - BPM	Trans. Profiles	Trans. Emittance	Long. Profiles	Beam Loss	Bunch Extinction
LEBT	2			1			
MEBT	2	9	4 + 2*	1	2*	TBD	1
Super- conducting Linac	1 per WS	1 per FE	1 per CM *	_	1 per CM *	2 per CM	_
Linac to Booster Transfer Line	2	1 per FE	4 to 6 *	1	1 *	1 per FE	_

FE = focusing element

CM = cryomodule

WS = warm section

* = laserwire

Risk and Challenges

- Non-invasive beam profiling
 - For H- beams SC Linac
 - Laser-based profile monitors
 - Transverse and longitudinal profiling
 - For proton beams Rings
 - Ionization Profile Monitors (IPM)
 - Electron Beam Profile (EBP) monitors
- Tails/Halo measurements and mitigation
 - Control of losses in Recycler
- Strong competition for resources
 - Effects timeline of diagnostics development

