

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Warm Front End Concept

A. ShemyakinPIP-II Machine Advisory Committee9-11 March 2015

Outline

- Warm front end performance requirements
- Design concept
- Required R&D

- Note
 - Since last MAC
 - many elements of the front end moved from ideas to technical designs or hardware
 - No significant changes in scheme or specifications
 - Therefore, this talk is to remind about main concepts as an introduction to reports by L. Prost and J. Steimel
 - Where technical details will be presented

Warm front end performance requirements

- PIP-II: 800 MeV SRF linac constructed of CW-capable accelerating structures and operated initially at 1% duty factor
- The warm front end prepares H- beam optimized for Booster injection and provides capabilities for future CW operation
 - Output energy 2.1 MeV
 - Below neutron production and high enough to mitigate space charge effects up to 10mA
 - Peak beam current up to 10 mA (from µs to CW)
 - 5 mA nominal; 4 mA in macropulse for Booster injection
 - Bunch-by-bunch selection capability
 - For into-bucket injection to Booster and for future CW multi-user operation
 - Output rms emittances: ε_{\perp} <0.23 µm, ε_{L} <0.31 µm
 - Proper vacuum, tails, and bunch extinction management

Design concept

- Ion source(s), LEBT, RFQ, MEBT
 - SRF (HWR cryomodule) directly follows MEBT
 - Long MEBT to accommodate the chopping scheme
- Attention to factors that may determine reliability and uptime
 - Two ion sources
 - Low gas flow to RFQ with a long LEBT
 - Proven-design RFQ
 - Low particle loss in RFQ
 - System of scrapers in LEBT and MEBT
 - Passive and active parts of MPS
 - Very low gas flow to SRF with a differential pumping section

3/9/2015

lon source

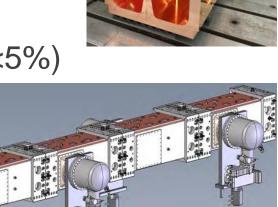
- DC H- source
 - 30 keV, ≥10 mA
 - Emittance ≤0.14 µm rms norm. (preferably ~0.1)
- PXIE: ion source from D-Pace, Inc
 - Satisfies all PIP-II requirements
 - Current can be modulated with extraction electrode voltage
 - Filament-driven, volume, no Cs
 - Life time ~300 hrs
- Alternative schemes are being developed by various groups
 - May provide a longer life time with the same other parameters
 - Using the LEBT scheme with two sources might be rational at longer life time as well
- Capability to service the ion source with accelerator operating would be highly beneficial
 Fermilab

Low Energy Beam Transport (LEBT) requirements

- Purposes:
 - Beam matching, differential pumping, fast beam turn-off for machine protection, beam chopping, transverse tails scraping
- Requirements
 - Output emittance <0.18 µm rms norm. (30 keV, 5 mA)
 - − Gas load to RFQ $\leq 10^{-4}$ Torr I/s
 - DC or pulse operation
 - Up to 60 Hz for commissioning purposes; from 1µs to DC
 - Preferably, Twiss parameters changes during the pulse are small
 - Tools to control the beam current and position at the RFQ entrance
- Switching dipole magnet upstream of 2nd solenoid
 - Two ion sources, removal of neutrals and protons, personnel protection

🛟 Fermilab

LEBT concept


- Two identical legs
 - Ion source
 - differential pumping chamber with a port for emittance scanner
 - Solenoid
 - DCCT
 - Valve

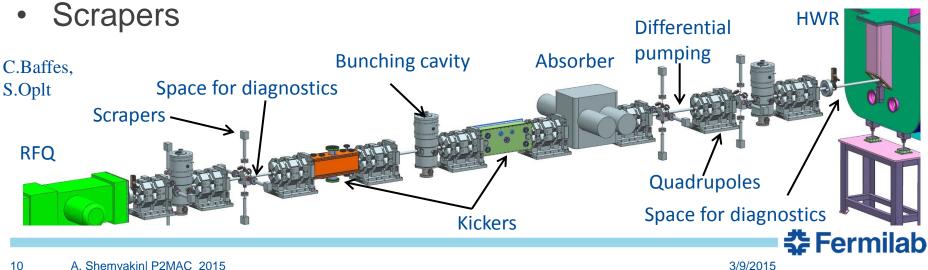
- Ion source Emittance scanner port R.Andrews, D.Snee, T. Hamerla, M.Alvarez, A. Chen
- Partially neutralized transport
 - Un-neutralized transport downstream of Solenoid #2 may be a better solution for pulsed operation.
 - Vacuum at the ion source and RFQ differ by ~10³. Hence, neutralization time changes from µs to ms.
 - Allows chopper between solenoids
 - See L. Prost's report for details

🛠 Fermilab

RFQ concept

- 2.1 MeV, 162.5 MHz CW RFQ
 - Expect to use the LBNL design
 - Detailed RF and beam simulations have been performed
 - output emittances $\epsilon_{\!\perp}{<}0.2\,$ µm, $\epsilon_{\!L}{<}0.28\,$ µm
 - The concept has been successfully implemented at IMP (Lanzhou, China) with protons
 - 10 mA CW delivered to (and through) cryomodules
 - 95% transmission reported
 - PXIE RFQ based on this concept is in production
 - See J. Steimel's report for details
- Expect good vacuum and low beam loss (<5%)
 - Should be beneficial for reliability

🚰 Fermilab

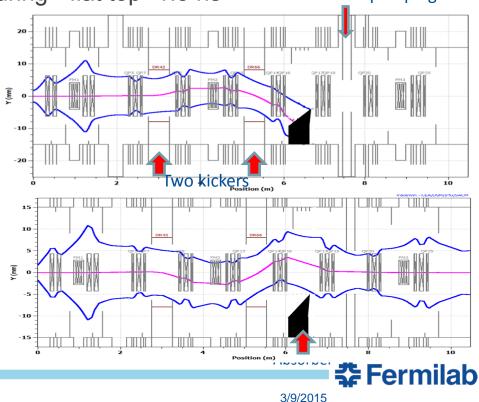

3/9/2015

Medium Energy Beam Transport (MEBT) requirements

- Purposes:
 - Beam matching, differential pumping, transverse tails scraping
 - Bunch-by-bunch selection
- Requirements
 - 2.1 MeV, up to 10mA CW (5 mA nominal), <0.23 μm rms norm.
 - Compatibility with SRF
 - Bunch-by-bunch selection
 - Arbitrary bunch structure
 - Loss of pass-through bunches < 5%
 - Bunch extinction to $\leq 10^{-4}$
 - Diagnostics to characterize the beam out of RFQ and to HWR

MEBT concept

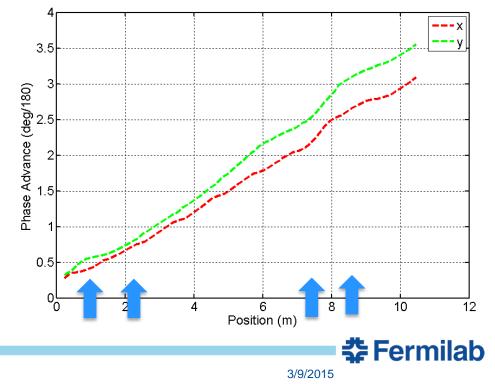
- Chopping system (next slide)
- Transverse focusing with 2 doublets and 7 triplets
 - First short section for beam matching; 1.14 m period after
 - Determined by space required for kickers and absorber
- Longitudinal focusing with 3 bunching cavities
- Last ~2 m are dust-free, UHV
 - H₂ pressure at MEBT HWR interface $< 2 \cdot 10^{-10}$ Torr


Chopping system

- Two kickers in sync + absorber
 - Two broadband travelling-wave kickers separate bunches by 6σ
 - 0.5 m plate length, 16 mm gap
 - Each plate potential changes by 500V between passing and removing states
 - Voltage variation $<\pm 25V$ during "flat top" 1.3 ns

Differential pumping

- 6.15ns between bunches
- Absorber is rated for 21 kW
 - 0.5 m length plate
 - Beam comes at 29 mrad
 - To decrease the power density to 17 W/mm²
- Will be tested at PXIE


3σ Y beam envelopes for removed (top) and passing (bottom) bunches. A. Saini

Scrapers

- 4 sets of scrapers, 4 jaws each
 - Independently movable, electrically isolated
 - Scraping, machine protection, beam size estimation
- With proper phase advance in pairs, all high transverse action particles can be removed
 - First pair makes the main scrape (~1%) and protects kickers
 - Downstream pair removes tails created by chopping and protects SRF

Phase advance along MEBT at 5mA and position of scrapers. A. Saini

Modes of the front end

- Beam for tuning: safe pulses
 - start with 5 µs single pulses; increase the pulse frequency to 60
 Hz and pulse length to CW
 - 5 μs is enough for diagnostics and relatively safe for SRF
 - Ion source produces long enough pulses to reach neutralization in the upstream LEBT; LEBT chopper cuts the needed length; MEBT chopper trims the front of the pulse train if needed
 - Optimum for vacuum management
- Booster injection: 0.6 ms, 20 Hz pulses
 - The same combination of modulating and chopping
 - MEBT choppers creates a bunch sequence optimal for longitudinal painting of the Booster buckets
 - Not harmonically related RF systems for SC Linac and Booster
 - Lock of bunch chopper to Booster RF with LLRF
- CW: future multiple-user operation
 - MEBT choppers creates the required bunch sequence

Fermilab

R&D topics

- To be addressed by PXIE
 - LEBT with low emittance growth compatible with chopping
 - Reliable CW RFQ
 - Bunch-by-bunch selection in MEBT
 - Compatibility of high-power deposition in MEBT absorber with SRF several meters downstream

• Making the entire line reliable, predictable, tunable

