

Indian Institute Fermi Lab Collaboration Status of development of Magnets for PIP-I and PIP-II

Electromagnetic Applications Section Control Instrumentation Division Bhabha Atomic Research Centre, Trombay, India

- **1. Configuration of Project-X : layout of magnets**
- 2. Status of MEBT and HEBT Magnets
 - a. Quadrupole Magnets
 - **b. Dipole Correctors**
- **3.** Superconducting focusing lenses for SSR2
- 4. HB650 Quadrupole Magnets

Magnets layout in Project-X

The MEBT (Medium Energy Beam Transport) and HEBT consists of Following Quadrupole and Dipole Corrector Types.

- •Quadrupole-F
- •Quadrupole-D
- Dipole Corrector (DC)

Quadrupole-D along with Quadrupole-F forms part of triplets. MEBT consists of two doublet (F-F-DC) and seven triplets (D-F-D-DC). Combined corrector dipole coils are present after every doublet or triplet. Total number of Quadrupoles is as tabulated below.

Thus total of twenty five Quadrupoles and nine dipole correctors form part of PXIE MEBT. Following is the plan layout of MEBT for PXIE.

F-F-DC; F-F-DC; D-F-D-DC; D-F-D-DC;

SN	Magnet	Qty	Integrated magnetic	Magnet	Radial	Good	Integrate	ed field
	Туре		field	Length	Pole	Field	unifor	mity
			Required	(mm)	separation	Region	Required	Obtained
					(mm)			in design
1.	Quad-F	18	1.5 Tesla	140	34	23	<1%	0.38%
2.	Quad-D	16	0.85 Tesla	90	34	23	<1%	0.40%

The development related to MEBT and HEBT magnets is underway in form of two major activities:

- •Quadrupole Magnets and magnets frames
- Dipole Corrector magnets

The present status of above activities is tabulated below.

	Quadrupole Magnets and magnets	Dipole Corrector magnets
	frames	
Deliverables	Quad-F : 18; Quad-D :16	15
	Triplet frame : 8; Doublet frame: 3	
Design	Complete	Complete
Prototyping	Complete	Complete
Qualification of	Complete	Complete
prototypes at FNAL		
Development of	Fabrication Complete,	Fabrication Complete,
two number of	Magnetic measurements planned in first	Magnetic measurements
Doublets with	half of March 2015,	underway
dipole correctors	Ready for shipment : March end/April	Ready for shipment : March
	2015 beginning	end/April 2015 beginning
Series Production	• Quotations received from ECIL,	Tender floated
	recommendations for placement of	• Purchase order recommended
	PO done	

Quadrupole magnets for MEBT and HEBT

DEVELOPMENT TILL DATE : QUADRUPOLE MAGNETS FOR MEBT & HEBT

SN	Milestones	Status	
1.	Design, development, preliminary electrical and magnetic measurements and beam line qualifications of Quadrupole-F magnet at BARC	Complete	
2.	Magnetic measurements on Quadrupole-F magnet at FNAL	Completed Met design requirements	
3.	Development of Triplet Magnet Assembly	Development complete	
4.	Development of Doublet Magnet Assembly	Development Complete	
5.	Glass filled molded bobbins for Quadrupole-F and Quadrupole-D	Complete	
6.	Setting up of Magnetic measurements set-ups at BARC	Tender raised	
7.	Tender for series production of Quadrupole Magnets	Quotations received. Work order recommended	PLANE AREA DE LA CALLANDA DE LA CALL

Electromagnetic design and salient features of Quadrupole

S	Parameter (Simulated values)	Value	Unit
1.	Integrated Magnetic field	1.54	Т
	Gradient		
2.	Integrated Magnetic field	0.15	%
	Gradient uniformity		
3.	Magnetic Field gradient	12.89	T/m
4.	Magnetic length	119	mm
5	Magnetic Field linearity	0.88	%

S	Parameter (Boundary conditions)	Value	Unit
1.	Maximum temperature rise	50	°C
2.	Transverse space	300 X 300	mm

- 1. 3-D magnetic pole optimization for achieving required magnetic field uniformity and for limiting higher order multi-poles.
- 2. E-M design accomplished within the given boundary.
- 3. Design and thermal qualification of electrical coils; maximum temperature rise of 20 °C achieved with natural convection cooling.
- 4. Engineering design for ease of assembly and disassembly of magnets at site with repeatability of measurements.

Transverse Magnetic Field in longitudinal direction

Magnetic measurement set-up at EMAS Lab

Quadrupole-F in Beam Line at FOTIA

Quad-F undergoing testing

Design and Development of Doublet and Triplet magnet assembly

Triplet Quadrupole magnet assembly

Doublet magnet assembly on FOTIA beam line

Beam Line Qualifications of Doublet Quad assembly at BARC **Fermilab**

Doublet assembly at FOTIA beam line in BARC at 2.5 MeV Proton beam

Slight steering of beam due to offset between magnetic axis and beam axis

Magnetic Qualification on Quadrupole-F magnet at FNAL

Quadrupole F mounted on Stretch wire bench at Fermi Lab

- Quad F Magnetic Requirements:
 - Center Stable to 0.1 mm (dis/re-assembly)
 - $\int Gdl(I_{max}=10A) = 1.5 T$ (TF=150 T/kA)
 - 1% Field Homogeneity for R<11.5 mm
- Quad F Magnetic Measurements:
 - Single Stretched Wire Technique
 - Center Stability vs I, survey center reproducibility
 - Rotating Wire, Integral
 Strength and Harmonics
 - At good field radius R=11.5 mm

function of current

Prototype Quad F : Results of Measurements from Fermi Lab

SN	Parameter	Measured Value	Designed for	Unit	Remarks
1.	∫ G.dl	1.44	1.44	Tesla	Meets Requirements
2.	Magnetic Centre (X axis)	45 to -30	Within ± 100	Microns	Meets Requirements
3.	Magnetic Centre (Y axis)	30 to -40	Within ± 100	Microns	Meets Requirements
4.	Integrated Magnetic field uniformity (up to n=10)	<0.5	< 1	%	Meets Requirements
5.	Magnetic centre as function of current	<20		Microns	Satisfactory
6.	Transfer function stability as function of input current	<0.5		%	Satisfactory
7.	Higher Order Multipoles	<0.3	< 1	%	Meets Requirements
8.	Skew Components	<0.1		%	Satisfactory
0.010 0.005 0.000 -0.005 -0.010 -0.015 -0.020	$ \begin{array}{c} 0.060\\ 0.055\\ 0.055\\ 0.055\\ 0.050\\ 0.045\\ 0.045\\ 0.045\\ 0.045\\ 0.045\\ 0.035\\ 0$		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	44.400 Gdl/A 44.200 44.000 43.800 43.600 43.400 0	(T/kA] vs Current [A] (preliminary) •<

Magnetic centre (Y-axis) as function of current Integral GI as function of current

- (1) Fabrication, integration and qualification of magnets will be carried out by supplier with guidance of BARC
- (2) Built to print drawings by BARC
- (3) Inspection formats for all check points prepared and the same will be followed for all magnets
- (4) Magnets will be shipped from Supplier to FNAL
- (5) Supplier will maintain data base of all inspections and will fill traveller document for all components

Activity	End date	Remarks
Awarding the purchase order for series production	Week 0	
Preparation and approval of working document	Week 8	This information will be shared with FNAL before approval by BARC
Placement of PO for purchase of raw material by supplier	Week 10	
Delivery of FIM to the supplier	Week 16	
Receipt of raw material by supplier	Week 22	
Installation of Magnetic Measurement facilities	Week 22	By this stage the qualified quad-F (at present in FNAL) shall be returned . This will be used as reference magnet.
Bulk production and qualification stage I	Week 36	Three triplets assemblies
Bulk production and qualification stage II	Week 44	Three triplets assemblies
Bulk production and qualification stage III	Week 52	Two doublets assembly and one triplet assembly
Bulk production and qualification stage IV	Week 68	One doublet frame, one triplet frame, seven Quad-F, 6 Quad-D (These include magnets for HEBT and spares)

TIME LINES OF DELIVERY

SN	Stage	Deliverables	Quantity	Delivery date (from date of PO)	Proposed delivery dates (assuming placement of PO by last week of March 2015
1.	Stage 1	 (a) Quadrupole F Magnets (b) Quadrupole D Magnets (c) Magnet Assembly D (d) Magnet Assembly T 	4 Nos 8 Nos 0 Nos 4 Nos	Week 36	30 November, 2015
2.	Stage 2	 (a) Quadrupole F Magnets (b) Quadrupole D Magnets (c) Magnet Assembly D (d) Magnet Assembly T 	3 Nos 6 Nos 0 Nos 3 Nos	Week 44	29 February, 2016
3.	Stage 3	 (a) Quadrupole F Magnets (b) Quadrupole D Magnets (c) Magnet Assembly D (d) Magnet Assembly T 	4Nos 0 Nos 2 Nos 0 Nos	Week 52	31 May 2016
4.	Stage 4	 (a) Quadrupole F Magnets (b) Quadrupole D Magnets (c) Magnet Assembly D (d) Magnet Assembly T 	7 Nos 2 Nos 1 Nos 1 Nos	Week 68	31 August 2016

ACCEPTANCE CRITERIA : QUADS

SN	Particulars	Acceptance criteria	nspection Document
1.	Qualifications	Following are applicable to each and every component.	
	on sub- components	 Geometric tolerances of each and every component shall be strictly as per drawings. Inspection report for all shall be prepared and submitted. Sub-components are Magnet Yokes (4 Nos per magnet) Yoke Connector-I (4 Nos per magnet) Yoke Connector-II (4 Nos per magnet) Yoke Connector-II (4 Nos per magnet) Nest ball targets (6 nos per magnet) The magnetic pole shall be scanned on CMM and deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. This deviation from the 2-D drawing shall be compared and reported. 	ormat 1 (F1) ormat 2 (F2) ormat 2 (F2) ormat 3 (F3) Format 8 (F8)
2.	Qualifications on assembled magnet	 Pole tip to pole tip distance shall be measured on assembled magnet and reported. This shall not vary more than ± 20 microns of the true value. Angle between poles shall be within ± 0.040°. Repeatability of the assembly with values with in ± 20 microns. These measurements shall be done five times on each magnet. 	ormat 9 (F9)
3.	Qualifications magnets assemble in the frame.	 Distance between yoke of consecutive magnets at three equal spaced locations in horizontal direction and two equal spaced locations in vertical direction. They shall not vary more than ± 50 microns of true value Geometric inspection of frame and sub-components Frame Magnet Base Platform Clamps Formation of true value Formatio	ormat 13 (F13) Triplet) ormat 14 (F14) Doublet) ormat 5 (F5) ormat 4 (F4) ormat 7 (F7)
5.	EM Coils	 Mechanical Qualifications The overall dimensional accuracy required is mentioned in drawings and are non-negotiable and shall be strictly complied with. The vendor shall carry out dimensional measurement with help of vernier calliper and shall report all the dimensions in table with following format. The dimensions shall be correct with 0.5 mm. Electrical Qualifications	ormat F8 (F8)
5.	Visual Inspection	All the poles will undergo visual inspection by the purchaser before and after nickel plating. IN case of dent or damage the given magnet yoke will be rejected and supplier shall replace the same.	

DIPOLE CORRECTOR MAGNETS

Dipole correctors are used for orbit correction by imparting horizontal and vertical kicks to the beam based on the feedback from BPMs.

Sr. No	Parameter	Value	Unit
1.	Integral B field	2.4	mT-m
2.	Peak B field	9.5	mT
3.	Current density	1.2	A/mm ²
4.	Clear Aperture	150 x 150	mm ²
5.	Ampere turns	2400	AT
6.	Good Field region	ø25	mm
7.	Field uniformity	1	%

Dipole corrector- Summary of the development till date

Electrical qualification of Dipole corrector coil windings

भाभा परमाणु अनुसंधान केंद्र BHABHA ATOMIC RESEARCH CENTRE

	COIL A	COIL B	COIL C	COIL D	COIL E
R @ 25 [°] C (Ohms)	0.790	0.794	0.791	0.788	0.791
L @100Hz (mH)	5.77	5.85	5.73	5.75	5.73
Q@100Hz	4.49	4.47	4.35	4.43	3.89
L@1KHz (mH)	5.761	5.83	5.72	5.756	5.72
Q@1KHz	22.4	22.5	22.2	22.4	20.8

Thermal/Magnetic Qualification tests

Sr. No	Parameter	Value
1.	Initial voltage for HD/VD @ 4A	6.4 V
2.	Stabilised voltage	7.0 V
3.	Temperature Rise	~23ºC

Dipole Corrector magnets mounted in doublet and triplet lattice arrangement

-400.0

-300.0

-200.0

Beam line qualification tests at FOTIA facility BARC

150.0 200.0 250.0 300.0 350.0 400.0 450.0

Particle Trajectory simulations

50.0 100.0

-100.0

Proton Beam scan in first quadrant of HD/VD dipole corrector H⁺ Beam Current 10nA; Beam Energy 2.5 MeV; Angular kick 10mRad

Sanjay Malhotra/Electromagnetic Application Section/Control Instrumentation Division, BARC

7

Magnetic Measurements carried out at Fermi Lab on Combined H and V Dipole Steerer

Magnetic measurement was carried out at FNAL on Dipole steerer magnet using Hall probe scanning method.

S. No	Parameter	Specified	Achieved
1.	Magnetic field integral	2.1 mT-m	2.4mT-m
2.	Field tilt -Deviation of X and Y field from perpendicular	<30	Negligible
3.	Integrated field uniformity	5%	Highly uniform

Comments from Dr. Mike Tartaglia – Fermilab (telcon meeting):

- The transfer functions and field profiles, are insensitive to the X,Y position (good).
- The calculated field integrals at 4A are BdL(VD)=0.00245 Tm, BdL(HD)=0.00242 T-m (requirement is .0021 T-m).
- Field integral meets requirements
- Field quality is acceptable even at 25mm radius, well beyond requirement level
- > No evidence of tilt in the orthogonal field components.

Magnetic Measurements result

Graph 1

Normalized center field strength [B field / nominal Current (4A)] vs various excitation current.

This graph is will facilitate to create a look up table in order to estimate the centre field of the magnet in the operating region while ramping up (and down) of the magnet power supply.

Graph 2

Normalized Magnetic field and uniformity of the normalized magnetic field in the good field region aperture (GFR) of horizontal dipole corrector.

Graph 3

Normalized Magnetic field and uniformity of the normalized magnetic field in the good field region aperture (GFR) of vertical dipole corrector.

Here the GFR aperture scanned is 25 mm diameter. From the plot, it is observed that integral field is independent of x and y position, hence the field is uniform

Dipole corrector- Plan for series production

Dipole corrector- Plan for series production

Acceptance criteria

Dimensional Inspection								
Sr. no	Qualification	Acceptance criteria	Scope					
1.	Visual inspection	Visual signs of damage, deterior oxidation shall not be present on any of the assembly, Loose terminal cor wiring shall not be present	ration and Purchaser Representative component shall inspect the magnet nection or assembly at suppliers premises					
2.	Geometrical Inspection	Each complete magnet shall undergo a geometrical control, to ensure compliance with the dimensional tolerances. Geometrical Inspection Template will be provided to supplier Major acceptance criteria is as given below:						
		Parameter	Value					
		Angle θ (θ 1, θ 2, θ 3, θ 4) as per DC-006	$90^{\circ} \pm 0.05^{\circ}$ (tolerance is inclusive of repeatability of angular measurements after dis-assembly and assembly of magnets multiple times)					
		Transverse dimensions of the assembled magnet with dowels	300mm ⁻ 0.05/+0 _{mm} , 50 ⁻ 0.05/+0 mm					
		Longitudinal dimensions of the assembled magnet	16 mm ^{- 0.05/+0} mm					
		All other dimensions and tolerances as per drawing						
		Surface finish on all surfaces 0.8 microns	or better					

Acceptance criteria - continued

Electrical Qualification of coils

Parameter	Value
Resistance	0.8 Ω ± 0.01 Ω
Inductance	5.7mH ± 0.1mH
Q factor	
@ 100Hz	4.7±0.5
@ 1KHz	22±0.5
Leakage current between coil and core (Hipot test @500V)	<5µA
Ring test	All the coils shall pass the ring test @100V by differential area method within 2% band.

Once the pre-series coil winding is completed the parameters may differ slightly. Series coils will be compared against first standard coil. Following parameters shall be controlled to avoid variations in electrical parameters of the coil:

Parameter	Value
Total number of turns	608 ± 1 turn
Min number of turn /layer	76
Max number of turn/layer	77
Number of layers	8

Magnetic Qualification of Dipole Steerer

Magnetic Qualification of the dipole steerer will be carried out at BARC before shipment to FNAL:

Following parameters will be measured (Magnetic Measurement bench under development, will be ready by April'2014):

- i. Field integral vs excitation current (during ramp up and down)
- ii. Field integral uniformity for horizontal and vertical dipole corrector
- iii. Tilt in orthogonal field components

Superconducting focusing lenses for SSR2

SSR2 Focusing lens Location in Project-X Beam Lattice

- 1 Cryomodule consists of 9 cavities & 5 magnets
- Four such SSR2 cryomodules- <u>Total 20 Magnets and its cold mass and its current leads</u>
- Cavity and focusing elements are grouped and placed in SR²

Beam Optics requirements for SC focusing lenses

- Integrated focusing strength \geq 5 T²m
- Integrated dipole correctors- 2 Nos Each with bending strength ≥ 0.003 T-m
- Cold mass clear aperture = 45 mm
- Uncertainty of location of effective magnetic axis in the focusing solenoid of lens relative to fiducials on the outer surface of cold mass – Better than 0.5 mm RMS
- Precision of angular alignment must be better than 1 mrad RMS

Design of solenoid focusing lens

Magnetic field generated by the SSR1 Solenoid Solenoid current : $\leq 100 \text{ A}$ Dipole current : \leq 50 A Magnetic field (T) Each lens must be quench protected 6 Maximum magnetic field generated by the lenses on the surface of SSR2 cavities must be limited to 100 G Focusing strength $= 4.43 \text{ T}^2.\text{m}$ 6.8309 100 Without FRC With FRC 80 Flux 20 -60 -40 -20 0 40 60 Return < Along the solenoid length (mm) 60 10 Coil Without FRC With FRC 10^u Magnetic field(T) Main Coil 10 Bmag=30 Gauss 10 50 100 150 200 Ω -60 -40 -20 120 140 160 100 60 80 100 120 140 ▼ 8.0461×10⁻¹⁰ -40 -20 0 20 40 Surface: von Mises stress (MPa) Surface: Total displacement (mm) ▲ 1.7177×10⁻³ ▲ 27.9 0.0016 Stresses with wire pre tension of 10 N 0.0014 Max Von Mises stress : 28 MPa 0.0012 0.001 0.0008 -20 -40 0.0006 Magnet design and analysis – Reference inputs from TD-12-010 0.0004 -80 0002 -1 00

-60

-40 -20 0

20 40 60

80 100 120 140

V 0

▼ 0.0563

Cold Mass With Focusing Lens

Steering Dipole Includes : Horizontal and vertical steering

- Rectangle area : 5 x 5 mm²
- Number of turns : 100 turns
- 0.438 mm diameter NbTi wire with 54 filaments.
- Formvar insulation (class 105).

MAIN COIL & Flux return coil

- 0.438 mm diameter NbTi wire with 54 filaments (M/s Luvata make),(0.4 bare diameter)
- Formvar insulation (class 105).
- Winding tension 10 N.
- Vacuum epoxy impregnation
- Banding using SS 316L
- Number of turns/layer : 282 ± 1
- Number of layers : 31
- Stored energy : 6.5 KJ at 100A
- Flux return Coil
 - Number of turns/layer : 282± 1
 - Number of layers : 6
 - Stored energy : 1.2 KJ at 100A

<u>Requirement of NbTi</u> <u>strand/magnet = 2 Km</u>

Vertical Cryostat for SC Magnet testing

- Liquid nitrogen cooled Low loss liquid helium cryostat.
- Specifications:
- Bore diameter : 250 mm (clear access)
- Liquid helium volume : 100 lts.
- Helium Evaporation rate : < 2
 lph
- Purpose:
- Cold bore Magnetic field measurement of SC Magnet.
- Quench characterisation of SC Magnet.
 - Expected to be installed inside BARC before March 2015.

Quench Simulation

- COMSOL based quench analysis program has been developed.
- The basis of this program is "Propagation of Normal Zone in quenching superconducting solenoid modeling using COMSOL"- I.Trechkine – TD-14-003

Conduction cooled Current leads

- Current leads contribute to major heat load on the cryomodule.
- Conduction cooled current leads with thermalisation blocks to reduce heat load on liquid helium.

T.Nicol, PIP-II Meeting, Sept 2014

- Two different lengths of copper electrodeposited over brass wire.
- SS Enclosure welded to connecting blocks.
- Kapton, Epoxy impregnated G10 for electrical insulation.

Our capabilities

Room temperature bore cryostat Cryostat Vacuum testing

VACUUM PFEIFFER SingleGauge E+ 8 $\mathbf{q}\mathbf{q}$

Liquid Nitrogen testing (9.4 x 10⁻⁶ Torr)

Four quadrant Programmable power supply (400A, 10V)

INEERING SOLUTIONS LT

I-DESIGN ENGINEERING SOLUTION

HB650 Quadrupole Magnets

Optics requirements of HB650

SN	Parameter	Value	Unit
1.	Integral Magnetic Field gradient	~ 3 @ 1 GeV	Tesla
2.	Magnetic Field gradient (G ₀)	15 @ 1 GeV	Tesla/m
3.	Pole tip to Pole tip distance	22	mm
4.	Good field region (Diameter)	30	mm
5.	Uniformity of integral magnetic field gradient in	1	%
	Good Field region		
6.	Permissible Higher order multipoles strength as	1	%
	percentage of quadrupolar component (upto n= ??)		
7.	Energy of the beam	1000	MeV
8.	Lattice configuration	FD-CCCCC-FD	-
9.	Magnetic Effective Length	200	mm
10.	Transverse aperture Limitation (Radius)	22	mm
11.	Separation b/w two quads (center to center)	600	mm

Required MMF per Coil : 2,800 AT

3D Simulation Model of HB650 Quad

Axial Magnetic field profile

Thanks for your kind attention!

Cryomodule Interface and electrical inputs requirements – Back up slide

- Solenoid current : $\leq 100 \text{ A}$
- Dipole current : \leq 50 A
- Each lens must be quench protected
- Maximum magnetic field generated by the lenses on the surface of SSR2 cavities must be limited to 100 G
- The solenoid must be integrated inside a LHe Vessel along with the beam pipe.
- Beam pipe must have
 - provision for mounting BPMs
 - bellow for alignment of cold mass in the cryomodule.
- Location of magnetic axis must be referred to optical fiducials installed on extension beams.
- Each focusing lens is to be installed on an individual alignment fixture and individual thermal insulating post.
- Each focusing lens must be mechanically and vacuum-tight connected to the beam pipe and Beam Position Monitor.
- Current is delivered to the focusing solenoid and the correctors of the lens by three pairs of current leads connected to power supplies located outside the cryomodule.
- Each focusing lens will be equipped with extension beams where optical fiducials used for the lens alignment are fixed.
- Each focusing lens must be equipped with gauges and voltage taps required by a quench-protection system.