Trophic Transfer Potential of Nanoparticles in Terrestrial Food Chains

Research | Education | Responsibility

Jason C. White, Ph.D.

Vice Director & Chief Analytical Chemist, The Connecticut Agricultural Experiment Station, New Haven CT

Presented at the SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference 2015, Venice Italy, March 9-11, 2015

www.ct.gov/caes

> There has been significant interest in using nanotechnology in agriculture

 \succ The goals fall into several categories

- Increase production rates and yield
- Increase efficiency of resource utilization
- Minimize waste production

 \succ Specific applications include:

- > Nano-fertilizers, Nano-pesticides
- Nano-based treatment of agricultural waste
- > Nanosensors

Review

2012

Bipactivity and Biomodification of Ag. ZnO, and CuO Nanoparticles with Relevance to Plant Ferformance in Agriculture

Partners O. Seretger, Asia J. Metranel Sound /I. Boltzand anne i àraimhail

"Seek mean of Berlogy, "Unit's Since Reserves Laboratory," and Generations of dialogical Exercision, Unde State University Logic, 47*

a decare indexinating of the complex science/our and complex becare with plane, and an even colorism is the paralelilles et d'élévent évanement. Key words, status over addressed, y. dynamic light scattering.

contrary fully: no ymenu substanting. Daurum frank onn milionat reduced southbane cultized statutione, induce i april reld, indote Upretamial: autocitive Upretace plasma mass

www.ct.gov/caes

Beer weeks

2012

I D I B H A L D F AGRICULTURAL AND FOOD CHEMISTRY Labrahan Supri

Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities

Mesonder Groops," Kalja Knauer," and Thomas D. Butheli^{er},

By compare Recembric Tintum Research Station ART, 59 (# Zurch, Stationard) Found Vites are Againstony, 3009 June, Switzmand

C supervises before dasa

- Nano-fertilizers often contain nutrients/growth promoters encapsulated in nanoscale polymers, chelates, or emulsions
 - \succ Slow, targeted, efficient release becomes possible.
 - > In some cases, the nanoparticle itself can stimulate growth
- Nanosensors can be used to detect pathogens, as well as monitor local, micro, and nano-conditions in the field (temperature, water availability, humidity, nutrient status, pesticide levels...)

www.ct.gov/caes

But must Flow Rus (2015) 1972; 35, BOI 10,1007/s12011-007-0045-4

The Improvement of Spinach Growth by Nano-anatase TiO₂ Treatment Is Related to Nitrogen Photoreduction

Pan Yang - Chao Liu - Fengqing Gao - Mingru Su -Xiao Wu - Lei Zheng - Fashui Hong - Ping Yang

Carbon Nanotubes Induce Growth ²⁰¹² Enhancement of Tobacco Cells

Mariye V. Khodiakovskaya,^{1 *} Kanishka ve Silva,¹ Alexandru S. Biris,⁴⁰ Enkeleda Dervishi,1 and Hector Villagencio¹

Repetition of Applico Science Transformer use 2016 "Octant unit of Science Lancenter Effects of Analysis at Ull 6 Key, Alareas 2020 Entrel safe

Nano-pesticides often follow a similar model to nano-fertilizers; active pesticidal (insecticide, fungicide,...) ingredient associated with or within a nanoscale product or carrier

- Increased stability/solubility, slow release, increased uptake/translocation, and in some cases, targeted delivery (analogous to nano-based delivery in human disease research)
- > Can result in lower required amounts of active ingredients

Marschielege (251.) (26-22 (2011) St. The Klassis Society of Mystangy	DOUG STAND COLOLUS LESS	App. Make of the provided and the following	etre for lý endit (en adolení	R
Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin Kabir Lamaali, Sang-Woo Kimi', Jin Hee Jung', Yun Seek Kim', Kyoung Su Kim' and Youn Su Lee ¹⁹ 20 Main of Nu-Parents Teducary: Responder Science (Sector Foresteen Statistic), Kure Dependent of Aprechang Teducary, Comp. Respond Genes Researces and Conce for Depend Padlogravia. Sciel Network		Role of nanotechnology in agriculture with special reference to management of insect pests Materials Rais Asimatic Ingle		
Received Conver 21, 3000, Accepted Sebruary 16, 30 1; 2012 Parameters: Affecting the Efficient Dollyes	Small	Vectobiological Resource	Available on the all www.seconcedtract.com	Microbiological Research
Mesoporous Silica Nanoparticle Materials and Gold Nanorods into Plant Tissues by the Biolistic Method Susana Marthi-Ortlgasa, Justin S. Valenstein, Wel Sun, Lorena Moeller, Ning Fong, Brian G. Trawyn, Victor SY. Lin, and Ken Weng* In memory of Professor Victor SY. Lin, deceased Kay 4, 2010		Antifungal activity of zinc oxide nanoparticles against <i>Botrytis cinerea</i> and <i>Penicillium expansum</i> Lili He ¹ , Yang Liu ¹ , Azlin Mustapha, Mengshi Lin [*]		

www.ct.gov/caes

Nanoscale based micronutrients or other elements for disease suppression

- > A new research initiative at CAES
- Many micronutrients (Cu, Mn, Zn, Mg) stimulate plant defense systems

Nanoscale Micronutrients Suppress Disease

Plant pathoger Nanoparticle Victoriutrients • Cu (Ranhod et al. 20:4) OCuCu,0 (Giannousi et at 2013) CigW.Diz (Wani et al. 2012) DOMESSION DURING T ZnCiMgO, Cu Mani et al. 2012: Kanhed et al. 2014 2nD Citwa D THe et al. 2012 Non-nutrients 0141 (Cal et al. 2001 Q Q AD (Lamsal et al. 2011a) cichoracearante S BASCA 1 (Lampai et al. 2019b) P glomaste⁽²⁾ P berbarste⁽²⁾ 6 40. (Gajbhije et al. 2009) 5 semilarity C 🗘 In vivo (field or greenhouse) 👘 inhit frion of pathogen In vitro the inhibition

www.ct.gov/caes

Likeopatikes (2015) 740 13. julie 2015 al. 2015 Jak Alew

A review of the use of engineered nanomaterials to suppressplant disease and enhance crop yield

- Alia Sin Car, Wode Elicie, "Aliash Maklas jer Raher e Deris Correction United Darwig Tawa C. W.Gy. - Yor D. elizabet - Christian Dichtpa-

- Prior to 2010, data on NM interactions with plants was limited. Many early studies looked only at NPs with no bulk material/ion comparison.
 - This is a key point. It is irrelevant whether a NP/NM is toxic. The key questions are is that NM/NP more toxic than the bulk/ion and if so, is it by a different mechanism?
- > Are NM an emerging class of contaminants?
- There have been a number of recent studies assessing the effects of specific NPs on germination, root elongation, and other physiological/"omic" parameters
- These studies have tended to focus on acute toxicity; relatively short exposure to high concentrations. This is where we start in toxicology but as is frequently the case, chronic low dose exposure may be more important.
- Larger issue may be food chain contamination and an uncharacterized pathway of human exposure.

CAES Nanotoxicology Program

- The entire program is based on a simple question- From a regulatory standpoint, bulk/ion and NMs are considered equal. Is that true? Or are there important instances where NM "behave" differently? The follow up question; does it matter (hazard and risk assessment)?
- USDA NIFA Grant 1- "Addressing Critical and Emerging Food Safety Issues." A 5year \$1.5 million grant "Nanomaterial contamination of agricultural crops."
 - > Obj. 1: Determine the uptake, translocation, and toxicity of NM to crops.
 - Obj. 2: Determine the impact of environmental conditions on NM uptake, translocation, and toxicity to crops.
 - Obj. 3: Determine the potential trophic transfer of NMs.
 - Obj. 4: Quantify the facilitated uptake of pesticides through NM-chemical interactions.
- USDA NIFA Grant 2- Determine the impact of biochar on NM uptake and toxicity to crops and earthworm species.

III nois University

Carbondale

<u>Objective 3- Determine the</u> trophic transfer potential of NMs

- Trophic transfer potential of engineered nanoparticles remains largely unknown
- > There have been a few nice studies in aquatic systems
- For terrestrial systems, the published work is limited to group of 3 papers on Au NPs from the University of Kentucky

> For us, it is a three part question-

- Does trophic transfer occur?
- Is the rate and extent different for nanoparticles?
- What is transferred? lons or NPs or Both?

ls the food chain compromised?

Human exposure through dietary uptake

Trophic transfer to the food chain

9

Gardea-Torresdey et al. *Environ. Sci. Technol.*, 2014, 48 (5), pp 2526–2540

<u>Objective 3- Determine the</u> trophic transfer potential of NMs

- Experiment 1- NP or bulk CeO₂ (0 or 1000 mg/Kg) added to an agricultural loam.
- > Zucchini grown for 28d from seedling.
- Roots, stems, leaves, and flowers analyzed by ICP-MS.
- Leaves used to feed crickets for 14d.
- Crickets used to feed wolf spiders for 7d.
- Insect tissues for ICP-MS

NP/Bulk CeO₂: Biomass Effects

- No effect of Ce exposure on total wet or dry biomass
- Particle-size specific effects evident in root mass (decreases with exposure), stem mass (increase), and leaf mass (increase)
- NP CeO₂ reduced flower mass (reproductive tissues by more than 50%)

www.ct.gov/caes

NP/Bulk CeO₂: Plant Ce content

- Soil had background Ce at 21 mg/Kg so Ce present in controls
- NP-exposed tissues contained significantly more Ce than did bulk treatments!!
- Bulk and NP-exposed roots contained Ce at 119 and 576 mg/Kg (dilute acid-rinsed)
- NP-exposed shoot tissues contained 30-53% more Ce than bulk plants

NP/Bulk CeO₂: Cricket Ce Content

- Crickets fed bulk Ce contaminated leaves contained Ce at 15 ng/g
- NP exposed crickets had Ce at 33 ng/g
- Cricket feces for control and bulkexposed insects were 250-380 ng/g
- Feces from NPexposed crickets contained nearly 1000 ng/g

NP/Bulk CeO₂: Spider Ce Content

- All replicates (3 each) of control and bulk CeO₂-exposed spiders contained Ce at levels below the LOQ (4.6 µg/Kg)
- Two of the three NP-exposed spiders contained Ce at 8.8 and 5.9 ng/g; the third replicate was below the LOQ

Hawthorne et al. 2014. Environ. Sci. Technol. 48:13102-13109

Objective 3- Determine the trophic transfer potential of NMs

- Experiment 2- NP or bulk La₂O₃ (0 or 500 mg/Kg) added to an agricultural loam (a January soil-run in CT by post-docs from Texas...)
- \succ Lettuce grown for 50d from seedling.
- > Roots and shoots analyzed by ICP-MS.
- Leaves used to feed crickets and darkling beetles for 15d.
- Crickets used to feed mantids for 10d.
- Arthropod tissues for ICP-MS; S/TEM-EDS.

NP/Bulk La₂O₃: Biomass Effects

- La₂O₃ reduced root mass regardless of particle size
- La₂O₃ NPs reduced shoot biomass significantly more than did the bulk metal oxide

NP/Bulk La₂O₃: Plant La Content

44

- La root and shoot content was unaffected by particle size
- La translocation much greater that in lettuce than Ce in zucchini

De la Torre-Roche et al; in preparation.

NP/Bulk La₂O₃: Insect La Content

45

- La content in crickets and cricket feces was unaffected by particle size
- Similar to Ce, fecal content was much higher than tissue content

NP/Bulk La₂O₃: Insect La Content

- La content in mantids was unaffected by particle size
- La content in beetles was actually decreased for the NP

Trophic Transfer Studies-Ongoing Work

NP and bulk cerium trophic transfer part II- conducted at UTEP with TX soil (1000-2000 mg/kg CeO₂), kidney bean, Mexican bean beetle Majumdar et al; in preparation.

Trophic transfer of NP and bulk CuO-500 mg/kg in soil for 0 or 60 days, lettuce, cricket, anolis lizards.

www.ct.gov/caes

Gardea-Torresdey et al. Environ. Sci.

Technol., 2014, 48 (5), pp 2526-2540

- Determine why CeO₂ bioaccumulates in a particle-size specific fashion and La₂O₃ does not
- Measure ion release from metal oxides in soil
- Determine impact of root exudation on metal oxide dissolution
- "omics" endpoints
- Determine the nature of the accumulated Ce and La
 - ≻ S/TEM-EDX
 - ➢ Synchrotron (µXRF, XANES)

Is the food chain compromised?

Human exposure through dietary uptake

Trophic transfer to the food chain

Gardea-Torresdey et al. *Environ. Sci. Technol.*, 2014, 48 (5), pp 2526–2540

- Are engineered nanomaterials an emerging class of contaminants in agricultural systems? Do they behave different from their non-nano counterparts in a toxicologically significant fashion?
- In agriculture, exposure routes are numerous and can occur directly through NM-containing pesticide/ fertilizer formulations, as well as spills, or indirectly through the application of NMcontaining biosolids
- Trophic transfer studies just completed or underway
 - NP CeO₂ seems to be accumulated from soil and trophically transferred in particle size specific fashion.
 - NP La₂O₃ presents a different scenario, albeit with a different plant
- Clearly, much more work is needed

Acknowledgements

- B. Xing, O. Parkash- UMass
- L. Newman- SUNY ESF
- X. Ma S. Illinois University
- Gardea-Torresdey et al- UTEP
- J. Bennett, S. Isch- CT DPH
- Marmiroli et al.- Univ. of Parma, Italy
- T. Vanek Czech Republic

At CAES - Dr. Roberto De la Torre-Roche, Dr. Alia Servin, Dr. Arnab Mukherjee, Dr. Helmi Hamdi, Dr. Sanghamitra Majumdar, Dr. Luca Pagano (University of Parma), Joseph Hawthorne, Craig Musante

Funding-

- 2011-2016: USDA AFRI -Addressing Critical and Emerging Food Safety Issues-"Nanomaterial contamination agricultural crops"
- > 2012-2015: USDA AFRI –Nanotechnology for Agricultural and Food Systems-"Nanoscale interactions between engineered nanomaterials and black carbon (biochar) in soil"

www.ct.gov/caes