

Flows of engineered nanomaterials through the recycling system in Switzerland

Alejandro Caballero-Guzman

Tianyin Sun Bernd Nowack EMPA St. Gallen, Switzerland

SUN Conference 2015 Venice, Italy March 9-11, 2015

I. Background and goal

- Sun et al. (2014) estimated the ENM mass flows in Switzerland and the European Union
 - Pigment-TiO₂
 - \blacksquare Nano-TiO₂
 - Nano-Ag
 - Nano-ZnO
 - CNT
 - Fullerenes

I. Background and goal

T. Y. Sun, F. Gottschalk, K. Hungerbuhler, B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. *Environmental Pollution* 185, 69 (2014).

1. a) System definition.

- 1. b) Input information analysis
 - 33 consumer products categories analyzed using public inventories

- 1. b) Input information analysis
 - Nano-mass input to recycling (Tons per year in 2012), based on Sun et al. (2014)

	Percentile 15	Mode	Percentile 85
Nano-TiO ₂	30	43	79
Nano-ZnO	3	5	18
CNT	2	3	5
Nano-Ag	0.3	0.4	0.5

2. Chacterization of the recycling system using flow diagrams

E-waste recycling process (example)

Sources: Goodship and Stevels (2012) and info available in Internet, among others.

Calculate the transfer vectors

For each product category i, determine

$$(TC_{WIP}, TC_{LF}, TC_{EXP}, TC_{PMC}, TC_{CK}, TC_{WW}, TC_{ELIM})$$

such that
$$0 \le TC_x \le 1$$
 and $\sum TC_x = 1$

3. Calculate the transfer vectors.

- 4 Stochastic flow calculation
 - Probabilistic approach of MFA to incorporate uncertainty based on Gottschalk et al. (2010) → simulation using Monte Carlo-Markov Chain
 - TC's used to define triangular distributions
 - Mode = TC point value
 - Lower bound = 50% of the TC
 - Upper bound = 150% of the TC
 - Distributions simulation using 100,000 random values

Model assumptions

- Mass-based approach
- ENM characteristics (size distribution, shape...) have no influence on final fate
- ENM transformations considered: only elimination
- Static model (all flows occur in one year)

 Only «relevant» product categories selected (relevancy measured by total nano-mass transferred to recycling; at least ≥95%)

- 2. Product types analysis
 - a) Composition
 - b) Material fraction with ENM

Consumer electronics

Paints

3. Fate of the material fractions with ENM within the Swiss recycling system.

Material fraction	Associated recycling process	Fate
Ceramics	E-waste	WIP
Filter components	E-waste, cooling devices	WIP
Li-ion batteries	E-waste	Exported
Plastics	E-waste, cooling devices	WIP, Exported

Sources: waste management statistics and regulations; discussions with experts.

 Transfer vector assessment for the Consumer Electronics subcategories.

Product Material		Distribu-	Transfer Coefficients (TCs)						
Category	Category fraction	tion (%)	WIP	LF	EXP	РМС	СК	ww	ELIM
Consumer electronics	Ceramics	74	0.96	-	-	-	-	0.04	_
	Plastics	22	0.48	-	0.48	-	-	0.04	-
	Filter components	4	1.00	-	-	-	-	-	-
	TOTAL	100	0.85	-	0.11	-	-	0.04	-

Sources:

Distribution: inventory information and discussions with experts.

TCs: waste statistics and regulation; literature based.

1. a) System definition.

REMINDER

 Transfer vector assessment for the Consumer Electronics subcategories.

Product	Material	Distribu-	Transfer Coefficients (TCs)						
Category fraction	fraction	tion (%)	WIP	LF	EXP	РМС	СК	ww	ELIM
Consumer electronics	Ceramics	74	0.96	-	-	-	-	0.04	-
	Plastics	22	0.48	_	0.48	-	_	0.04	_
	Filter components	4	1.00	-	-	-	-	-	-
	TOTAL	100	0.85	_	0.11	-	_	0.04	-

Sources:

Distribution: inventory information and discussions with experts.

TCs: waste statistics and regulation; literature based.

 Transfer vector assessment for the Consumer Electronics subcategories.

Product	Product Material		Transfer Coefficients (TCs)						
Category	fraction	tion (%)	WIP	LF	EXP	РМС	СК	ww	ELIM
Consumer electronics	Ceramics	74	0.96	-	-	-	-	0.04	-
	Plastics	22	0.48	-	0.48	-	-	0.04	-
	Filter components	4	1.00	-	-	-	-	-	-
	TOTAL	100	0.85	-	0.11	-	-	0.04	-

Sources:

Distribution: inventory information and discussions with experts.

TCs: waste statistics and regulation; literature based.

- 5. Transfer vectors for the product categories with nano- TiO_2 :
 - Final input for the simulation of the probability distributions.

	Product	Transfer Coefficients (TCs)						
ENM	category	WIP	LF	EXP	РМС	СК	ww	ELIM
TiO ₂	Consumer electronics	0.85	-	0.11	-	-	0.04	-
	Paint	0.20	0.68	-	0.08	0.04	-	-

6. ENM probabilistic flows in 2012 (tons/year). Mode values (in blue) and percentiles 15th and 85th.

6. ENM probabilistic flows in 2012 (tons/year). Mode values (in blue) and percentiles 15th and 85th.

- Waste Incineration
 Plant (WIP): plastics,
 painted wood, ceramics
- Landfill (LF): mineral material with paint (e.g. gypsum, plaster)

6. ENM probabilistic flows in 2012 (tons/year). Mode values (in blue) and percentiles 15th and 85th.

- Exported (EXP): plastics
- Production-Manufacture-Consumption (PMC): demolished concrete
- Cement Kiln (CK): mineral residues or wood with paint

6. ENM probabilistic flows in 2012 (tons/year). Mode values (in blue) and percentiles 15th and 85th.

 Waste water (WW): releases during washing processes applied during recycling.

ENM	ZnO	Ag	CNT
Main fate	Landfills (3t) Mineral waste	WIP (0.2t) Plastics, filters, wood	Exported (2.4t) Batteries, chips, PCBs
Secondary fates	WIP (1t) Wood	Exported (0.06t) Plastics and textiles	Eliminated (<1t) Non-fe metals
	Cement+Concrete production (<1t) Mineral waste	Eliminated (0.06t) Fe-metal	Incinerated (<1t) Nanocomposites
	iviirierai waste	Waste water (0.04t) Landfill (<0.01t) Mineral waste	Car composites re-used (<1t)
		Cement+Concrete production (<0.01t) Mineral waste	

ENM	ZnO	Ag	CNT
Main fate	Landfills (3t) Mineral waste		
Secondary fates	WIP (1t) Wood	Exported (0.06t) Plastics and textiles	Eliminated (<1t) Non-fe metals
	Cement+Concrete production (<1t)	Eliminated (0.06t) Fe-metal	Incinerated (<1t) Nanocomposites
	Mineral waste	Waste water (0.04t)	Car composites re-used
		Landfill (<0.01t) Mineral waste	(<1t)
		Cement+Concrete production (<0.01t) Mineral waste	

ENM	ZnO	Ag	CNT
Main fate		WIP (0.2t) Plastics, filters, wood	
Secondary fates	WIP (1t) Wood	Exported (0.06t) Plastics and textiles	Eliminated (<1t) Non-fe metals
	Cement+Concrete production (<1t)	Eliminated (0.06t) Fe-metal	Incinerated (<1t) Nanocomposites
	Mineral waste	Waste water (0.04t)	Car composites re-used
		Landfill (<0.01t) Mineral waste	(<1t)
		Cement+Concrete production (<0.01t) Mineral waste	

ENM	ZnO	Ag	CNT
Main fate			Exported (2.4t) Batteries, chips, PCBs
Secondary fates	WIP (1t) Wood	Exported (0.06t) Plastics and textiles	Eliminated (<1t) Non-fe metals
	Cement+Concrete production (<1t)	Eliminated (0.06t) Fe-metal	Incinerated (<1t) Nanocomposites
	Mineral waste	Waste water (0.04t)	Car composites re-used
		Landfill (<0.01t) Mineral waste	(<1t)
		Cement+Concrete production (<0.01t) Mineral waste	

III. Total ENM outflow distribution (all ENMs)

IV. Conclusions

- Main flows to waste incineration, landfills or exported.
- No significant dissipation of ENM to new products (only to very small extent into plastics, concrete and cement).
- ENM risk assessment during recycling should focus on occupational exposure and release to the environment.
- Main uncertainties
 - ENM mass distribution between product subcategories
 - ENM release kinetics → Product knowledge

Thanks!

MAIN REFERENCE

Caballero-Guzman, A., T. Y. Sun and B. Nowack (2015). "Flows of engineered nanomaterials thorugh the recycling process in Switzerland." Waste Management. 36: 33-45. DOI: 10.1016/j.wasman.2014.11.006

ACKNOWLEGMENTS

SUN project funding from the EU FP7/2007-2013

CONTACT INFORMATION

alejandro.caballero@empa.ch