Sensors and Emerging Technologies for Tracking Nanomaterials in Complex Matrices

<u>Wunmi Sadik</u> Department of Chemistry State University of New York-Binghamton

Center for Advanced Sensors & Environmental Systems

SUN-SNO-GN International Conference, Laguna Palace, Venice, Italy March 9-11, 2015

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

This research is funded by U.S. EPA - Science To Achieve Results (STAR) Program Grant #

STATE UNIVERSITY OF NEW YORK

Acknowledgements

- Dr. Jurgen Schulte for evaluation of NMR data
- Prof. Gretchen Mahler for supplying Caco-2 and HT29-MTX cell lines

Instrumentation & Characterization

Dynamic Light Scattering (DLS): is the only technique able to measure particles in a solution or dispersion in a fast, routine manner with little or no sample preparation. AFM and STM: only suitable for 'hard' materials or conductors, i.e. those not affected by the preparation technique and is poor from a statistical point of view as only tens or hundreds of particles are measured.

 Electron microscopy: Provides
information about the shape and surface structure of the particle than an ensemble technique like DLS.

J. Environ. Monit., 2009, 11, 1782–1800 | 1785

UNIVERSITY OF NEW YORK

Characterization Challenges

- Workplace exposure to nanoparticle is a potential health hazard and could pose a major threat to humans.
- Most studies employed a "proof of principle" approach using relatively high doses to ensure a clear demonstration of toxic effects
- "No effect" level studies available, especially in complex matrices.
- Characterization tools unavailable for on-site and real time measurements in complex matrices.
- Sample preparation is key to a successful characterization in complex matrices. No standard data reporting; no analytics(mass or dose metrics reporting?)

•ACS Sustainable Chemistry & Engineering, 2, 1707-1716, 2014

Poly(amic) Acid Membranes & Hybrid Nanostructure

> Unique Properties:

Electro-active, a semi-conductor, stable in many solvents, biodegradable, biocompatible and has free carboxyl and amide groups that acts as molecular anchors

Broad applications:

Reductant, Chelator, electrode material, catalyst, membrane filtration, biosensor platform, capture, isolation and detection(CID) of airborne nanoparticles

Novel Chemical Forms:

Pellets, membranes, solution, hybrid structures

Research Needs:

Mechanical strength, electroactivity and hydrophobicity

Langmuir 26, 17 (**2010**): 14194-14202; Langmuir 21,15 (**2005)**: 6891-6899 ACS Catalysis 1, 2 (**2011**): 139-146.

Why PAA?

- Conductive
- Ease to prepare
- Enables flow of electronic charges
- Redox stable
- Possesses surface functional groups
- Permeable
- Porous structures

Fluorescent PAA biomembranes: A-PAA-CS with %0.3 GA, B-PAA-DA, C-1-PAA

15 h incubation D-m-PAA-DA with for 15 h

PAA stabilized nanoparticles while maintaining wettability

X-ray diffraction pattern shows crystalline particles were formed with uniform size & random size distribution.

Label & Chlorite (Nrm.≫= 38.86, 20.96, 34.83, 1.14, 3.84, 0.28) -

C:\Documents and Settings\Administrator\Desktop\Users\victor kariuki\07-02-2

HRTEM of nanosilver with PAA: Particles are twinned with 5 fold symmetry

Capture and Detection of Aerosol Nanoparticles using Poly (amic) acid, Phase-inverted Membranes

Journal of Hazardous Materials 279, 2014, 365-374.

BINGH,

Project Objectives

- The overall objective is to isolate and detect industrially-relevant CeO₂ and Fe₂O₃ nanoparticles from air.
- Specific Aims:
 - Synthesize PAA-paper and PAA-stand alone filters
 - Synthesize the nanoparticles using VENGES
 - Characterize the nanoparticles using SEM-EDS, XRD and BET
 - Demonstrate ex-situ electrochemical detection

Journal of Hazardous Materials 279, 2014, 365-374.

Paper-based PAA sensors

BINGHAM

UNIVERSITY STATE BEVERSITY OF NEW YORK

Sample PAA-on membrane electrodes (a) gold working electrodes on paper substrates, (b) gold counter and silver/silver chloride electrodes, (c) Working electrodes coated with PAA membranes, and (d) carbon working electrodes. Right: Gold array electrodes fabricated onto paper substrates; with subsequent coating of PAA membranes (notice the shiny PAA).

Journal of Membrane Science, 472(2014)261–271.

Surface morphology

PAA stand-alone membrane

PAA coating layer on filter

paper

UNIVERSITY STATE A

Optimization & Porosity

Harvard's VENGES

New Platform for pulmonary and cardiovascular toxicological characterization of inhaled ENMs

Nanotoxicology, 2011; Early Online, 1–11

Surface Characterization

SEM after Capture

•Journal of Membrane Science, 472(2014)261–271.

Mass Deposition and Concentration

•Aerosol size distributions on PAA-filter paper membranes

•There was a correlation between the deposition mass (mg) & the concentration (μ g/m³)

•Filter # 5 had the highest concentration (8.30E+04 μg/m³)

Dose dependent and electrode stability studies

•Correlation exists between the deposition mass (mg) & the current (A) •The limit of detection (LOD): $(3 * s_{blank})$ /slope was found to be 4.998 x $10^{1}\mu g/m^{3}$ •PAA is electroactive; redox peaks were observed at ~ 224 mV and 395 mV •Electrode was stable.

UNIVERSITY

Electrochemical Spectroscopy for TiO₂ and ZnO Aerosols

Highlights of PAA-based Sensors

- Exposure level assessment of aerosol nanoparticles reported using Harvard's VENGES
- Device equipped with pie-conjugated conducting PAA membrane filters/sensor arrays
- PAA membrane motifs used to capture, isolate and detect the nanoparticles
- Manipulating the PAA delocalized π electron enabled electrocatalytic detection
- Fe₂O₃, ZnO and TiO₂ quantified using impedance spectroscopy and cyclic voltammetry

Performance Evaluation with CANTOR*

Sampling	CANTOR (1)	PAA/VENGES
Weight	0.25Kg	Portable
Dimension	Small	Small
ENP Type	Carbon	Carbon-based, metal
		oxide, metal NPs
ENP Size	Bimodal 22/107nm	1-100 nm
ENP Concentration	6000 NP/cm ³	$10^{5}-10^{7}$ NP/cm ³
Sampling Time	15 min	3-25 min
Sampling Efficiency	1.32 %	> 99 %
Aerosol flow rate	0.681/min	0.5 L/min.

•H.S. Wasisto, S. Merzsch, A. Waag, E. Uhde, Portable cantilever based •airborne nanoparticle detector, Sensors and Actuators B, 187 (2013) 118-127.

STATE UNIVERSITY OF NEW YORK

Summary & Conclusions

- No real analytic science exists for measurement of engineered nanomaterials
 - not high-throughput and are not mass quantitative; no best technique available, a single method is not sufficient; most techniques have advantages & drawbacks
 - Sample preparation is key; routine methods unavailable
- Developed paper-based sensors with PAA filter electrodes for aerosol nanoparticles
 - Paper-based sensors combined with Harvard VENGES platform and TFF for aerosol and water based NP measurements
 - Filtration efficiency of PAA membranes was over 99.9%
 - Fe₂O₃ nanoparticles were detected using electrochemical detection technique. LOD: 4.998 x 10¹ g/m³

Paper-based electrodes coupled with tangential flow filtration(EC-TFF)

CANTOR sensor uses a miniaturized electrostatic ENP sampler (NAS TSI 3089) for sample collection and a 2" silicon wafer cantilever substrate that monitors the resonant frequency shift induced by the mass of the particles trapped on the cantilever. Other sensor types use surface acoustic waves and quartz crystal microbalance ^{10,11}

Acknowledgement

Multi-layered Separation

- Mixture: aqueous AuNPs solution(200nm, 50nm, 20nm)
- PAA membranes from different concentrations' casting solutions.

1st PAA membrane Layer

Standard

Continuous separation

2nd PAA membrane Layer

Standard

Continuous separation

Standard

Continuous separation

BINGHAMTON UNIVERSITY OF NEW YORK

Inhibition of Silver Ions

State University of New York

Acknowledgements

Defense Threat Reduction Agency

New York State Department of Environmental Conservation

SEM-EDS images of CeO₂ Nanoparticles

 \Box *SEM* images of CeO₂ nanoparticle aggregates on PAA membrane at a magnification of 5000x; 50000x

□EDS spectrum of the PAA surface with CeO₂ nanoparticles (KLM emission lines represents different electronic transition associated with x-ray emissions) BINGHAMTON □EDS elemental mappings for Ce, C and O, respectively, corresponding to elemental abundance.

SEM-EDS images of Fe₂O₃ nanoparticles

 \Box SEM images of Fe₂O₃ nanoparticle aggregates on PAA membrane at a magnification of 5000x; 50000x;

 \Box EDS spectrum of the PAA surface with Fe₂O₃ nanoparticles; (KLM emission lines represents different electronic transition associated with x-ray emissions)

 \Box EDS elemental mappings for Fe, C and O, respectively, corresponding to the respective abundance s 1 T

Aerosol size distributions on PAA- filter paper membranes

Filter with MEMBRANE (1)

Demokritus, Sadik, et al 2013