Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications

Indrani Mahapatra¹, Tianyin Sun^{2,3} Julian Clark¹, Peter Dobson⁴, Konrad Hungerbühler³ Jamie Lead^{1,5}, Bernd Nowack², Richard Owen⁶

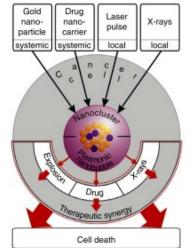
- 1. University of Birmingham
- 2. Empa-Swiss Federal Laboratories for Materials Science and Technology
- 3. ETH Zürich-Swiss Federal Institute of Technology
- 4. Warwick University
- 5. University of South Carolina
- 6. University of Exeter

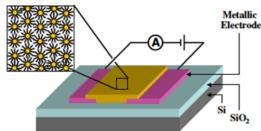
Overall structure

- Motivations
- Objectives
- Methodological approach
- Limitations
- Results
- Conclusions

MOTIVATION

SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference


9-11 March 2015, Verlice



Motivation

- Increase in research with regard to gold nanoparticles (nano-Au) in the healthcare field due to
 Tisch, U. and Haick, H. (2010) Reviews in Chemical Engineering. Volume 26, Pages 171–179
 - > Unique properties at nanoscale
 - Ease of surface functionalisation
 - Easy synthesis
 - Relative biocompatibility

Lukianova-Hleb, E.Y., et al. (2014) Nature Medicine 20, 778–784

SUN-SNO-GUIDENANO Sustainable Nanotechnology Conferer... 9-11 March 2015, Venice

Motivation

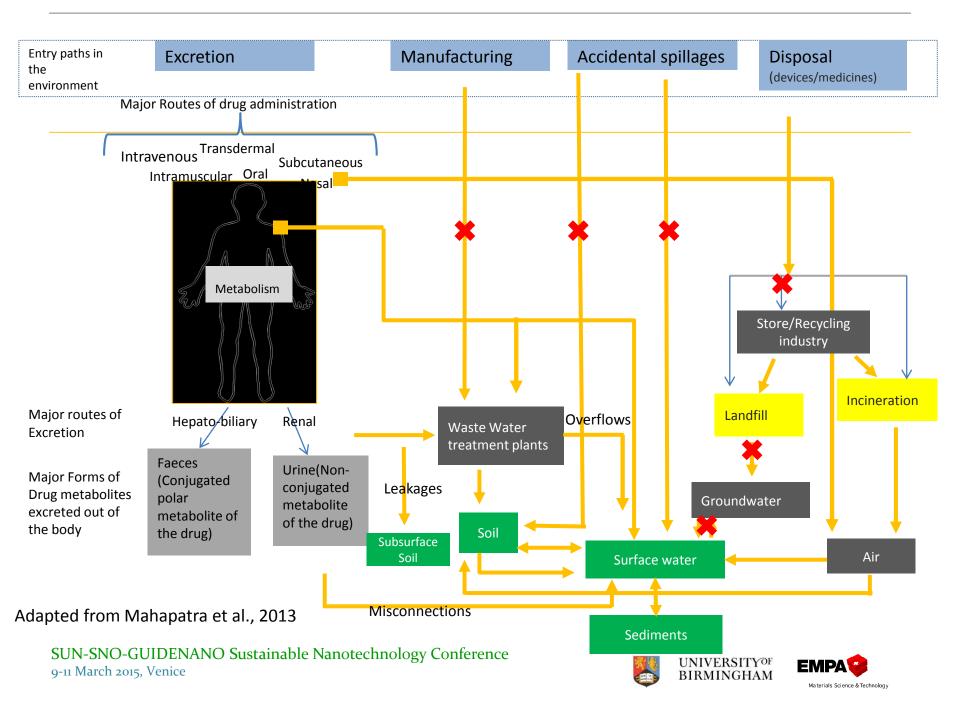
- Some medical applications already in the market and some show high potential for translation for widespread diseases like cancer, diabetes
- No studies yet published to predict environmental concentrations of nano-Au from medical applications
- Increase in research with regard to nano-Au in other areas – catalysts for air and water purification, sensors for detecting harmful gases
- Nano-Au has been shown to be toxic to organisms in the environment

Objectives

- Estimate the yearly maximal possible consumption of nano-Au from current and prospective medical applications for the UK and US
- Model the concentrations in the transient compartments of Sewage Treatment Plants, Waste Incineration Plants and the environment compartments
- Perform environmental risk assessment

METHODOLOGICAL APPROACH

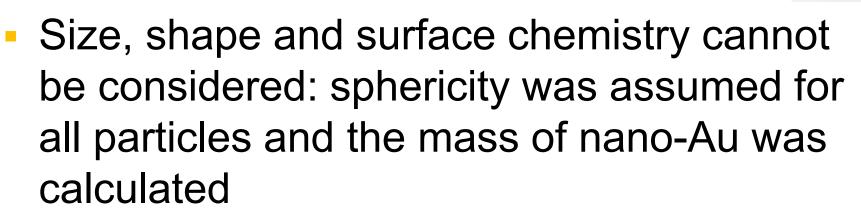
SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference 9-11 March 2015, Venice


Methodological Approach

- Model Type: Probabilistic mass flow model developed by Gottschalk et al., 2009
- Geographical regions: UK and US
- Consumption data: 100% market penetration and all patients, irrespective of socio-economic status etc., have access
- Risk assessment: Probabilistic species sensitivity distribution (pSSDs) vs. Predicted environment concentration (PEC) method adopted from Gottschalk and Nowack, 2013

LIMITATIONS

SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference 9-11 March 2015, Venice



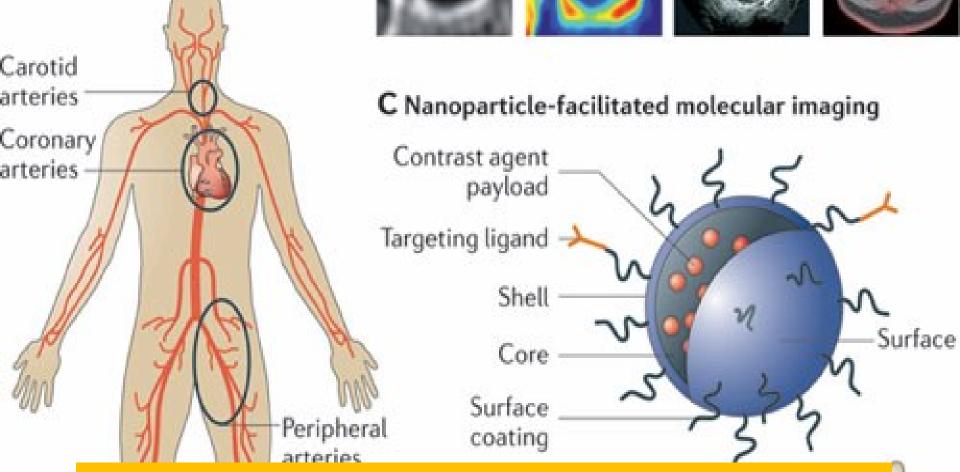
Limitations: Model

Static

- Dynamic aspects not considered (time dependant particle release as well as kinetics)
- Product use data of only one year

Limitations: Data

- Many extrapolations to estimate nano-Au amount in *in vitro* diagnostic devices
- Due to time lag in reporting and updating disease incidence and prevalence data in disease registries, not all data are for the same year
- No ADME (absorption, distribution, metabolism, excretion) studies in humans
- Very few studies on fate and behaviour of nano-Au in the environment
- No studies on transformation and fate of nano-Au in waste incineration plants
- Less toxicity data available with respect to soil organisms
- Limited chronic toxicity data for aquatic organisms



RESULTS

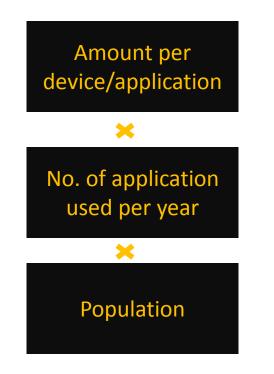
SUN-SNO-GUIDENANO Sustainado 9-11 March 2015, Venice

ESTIMATION OF CONSUMED AMOUNTS OF NANO-Au

SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference 9-11 March 2015, Venice

Applications selected

- Pregnancy and ovulation test kits
- Test kits to diagnose HIV/ AIDS
 - Home based
 - Lab based
- Removal of SA from nasal carriages to prevent nosocomial infection prevention
- Treatment of gum diseases
- Diagnosing septicaemia and respiratory virus
- Genetotyping diagnostic tests
- SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference 9-11 March 2015, Venice


- Diagnosis of different types of cancers and Chronic Kidney Disease via exhaled breath
- Treatment of cancers thermal ablation
- Treatment of cancers TNF delivery
- Diabetes management

Method to arrive at nano-Au consumption estimates

- Estimate the maximal possible nano-Au amount
 - mass of gold depending on particle size
 - > amount required per test for in vitro diagnostic medical devices (IVD) or therapeutic dose
- Number of times a particular application likely to be used in a year or dose required for treatment
- Population estimate using disease incidence and prevalence data for the most recent year

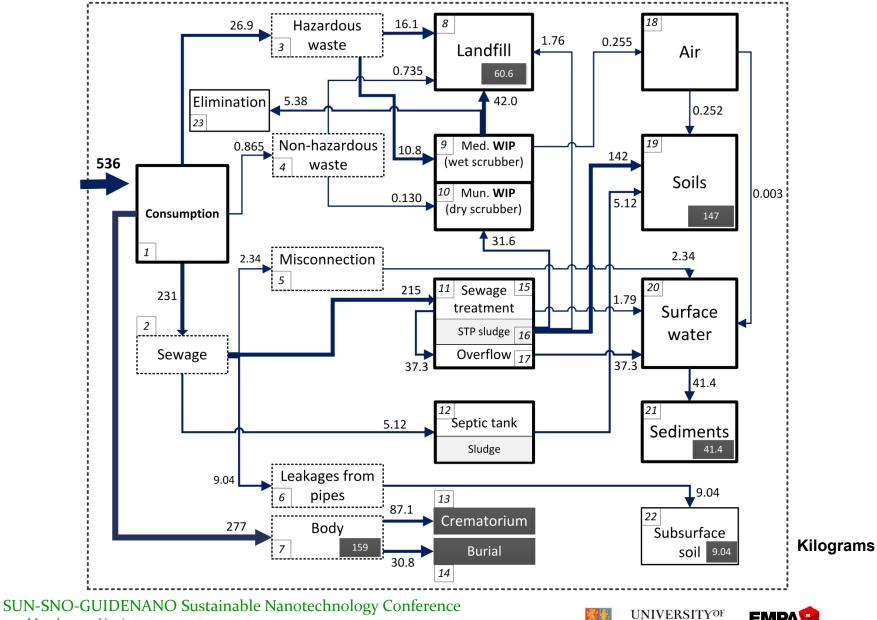
Consumption of nano-Au

	Application	UK	US	Un it	Waste compartment	Probability distribution function
	Insulin delivery for diabetes management	128	842	kg	Sewage	Uniform
	Treatment of Periodontitis	0.28 -107	1 - 365	kg	Sewage	Uniform
	Removal of Staphylococcus aureus from the nasal passage of patients	0.03- 53	0.11 -165	kg	Sewage	Uniform
	Diagnostic test kits for infectious diseases	74	356	g	Hazardous waste	Uniform
	Home based in vitro HIV test kits	18	87	g	Municipal waste	Uniform
	Pregnancy and ovulation test kits	3 -100	15-463	g	Municipal waste	Uniform

Consumption of nano-Au

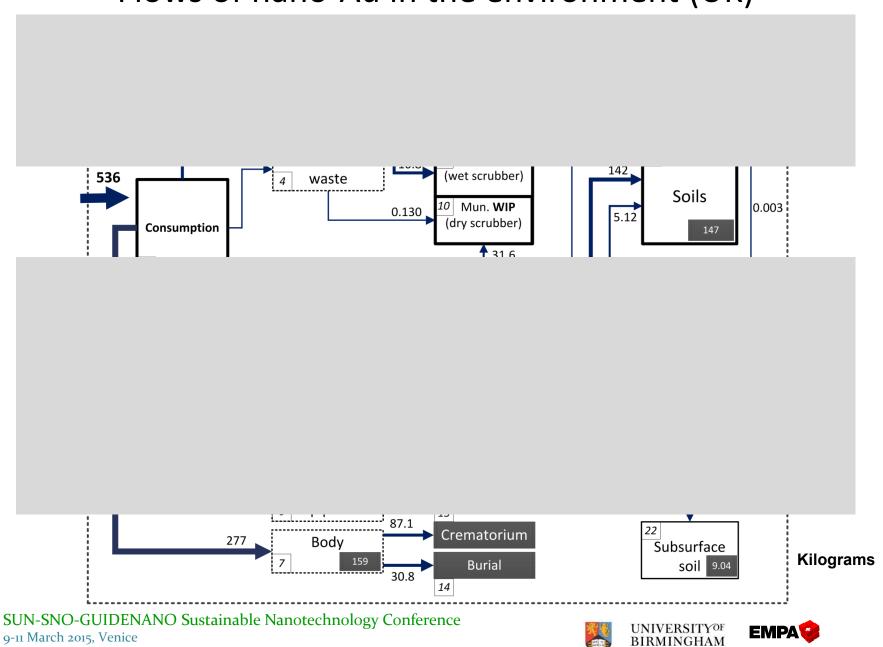
Application	UK	US	Unit	Waste compartment	Probability distribution function
Solid tumors (colorectal, pancreas, breast)	0.07-(0.42)-1	0.31-(2)-5	kg	Sewage	Triangular
Solid tumors (colorectal, pancreas, breast) – Compassionate use	0.42	2	kg	Sewage	Uniform
Head & neck cancer and lung cancer	140 - 234	745 - 1241	kg	Sewage	Uniform
Head & neck cancer and lung cancer – compassionate use	105 - 175	468 -780	kg	Sewage	Uniform
Sensors for diagnosing cancer via breath	0.01 - 1589	0.03 - 4616	g	Hazardous waste	Uniform

CONCENTRATIONS IN ENVIRONMENT COMPARTMENTS AND RISK ASSESSMENT

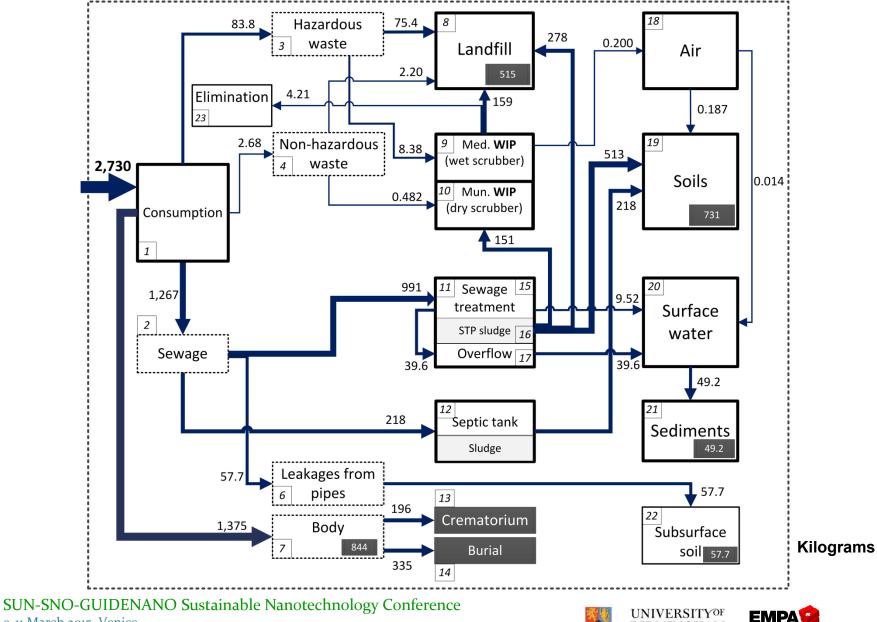

SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference

UNIVERSITY^{OF} BIRMINGHAM

Flows of nano-Au in the environment (UK)


9-11 March 2015, Venice

BIRMINGHAM **EMPA**


Materials Science & Technology

Flows of nano-Au in the environment (UK)

Materials Science & Technology

Flows of nano-Au in the environment (US)

9-11 March 2015, Venice

Materials Science & Technology

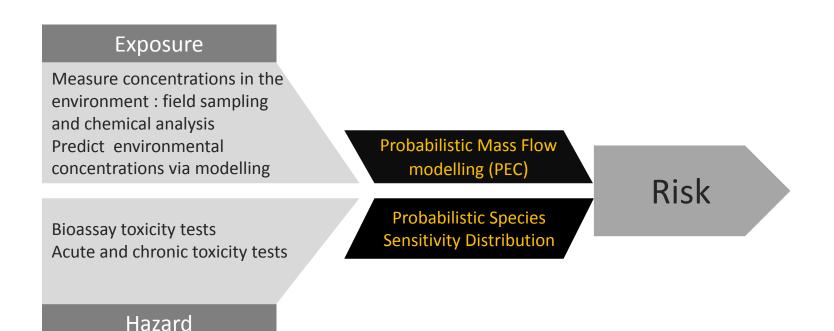
BIRMINGHAM

Concentration of nano-Au in the technosphere

		Hazardous waste	Landfill	Medical Waste Incinerators		Municipal waste incinerators	
				Fly ash	Bottom ash	Fly ash	Bottom ash
		µg kg¹	µg kg¹	µg kg¹	µg kg¹	µg kg¹	µg kg¹
	Q15	23	3	36	27	39	28
UK	Mode	34	4	28	23	51	28
	Q85	130	5	518	393	67	52
	Q15	20	3	30	23	31	30
US	Mode	16	4	27	20	38	30
	Q85	110	5	431	330	48	38

Concentration in non-hazardous waste is less than 0.1 μ g kg ⁻¹

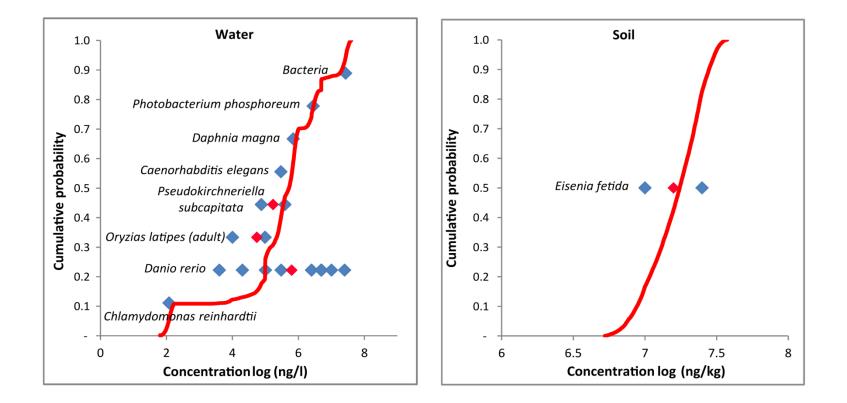
Concentration of nano-Au in the ecosphere

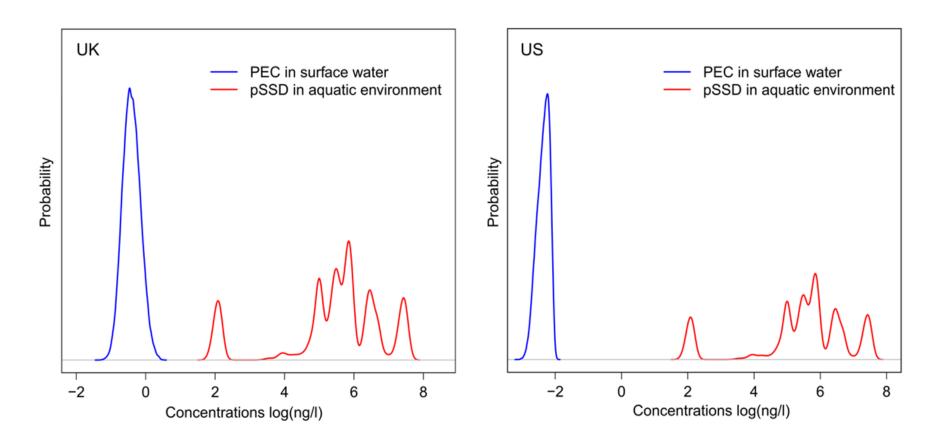

		STP Effluent	Surface water	Sediment	STP sludge	Soil
	Units	pg L-1	pg L-1	ng kg-1 y-1	µg kg¹	ng kg ⁻¹ y ⁻¹
	Q15	217	214	132	94	227
UK	Mode	359	268	165	126	301
	Q85	665	725	447	154	368
	Q15	95	3	3	119	121
US	Mode	168	4	5	145	147
	Q85	271	7	8	171	174

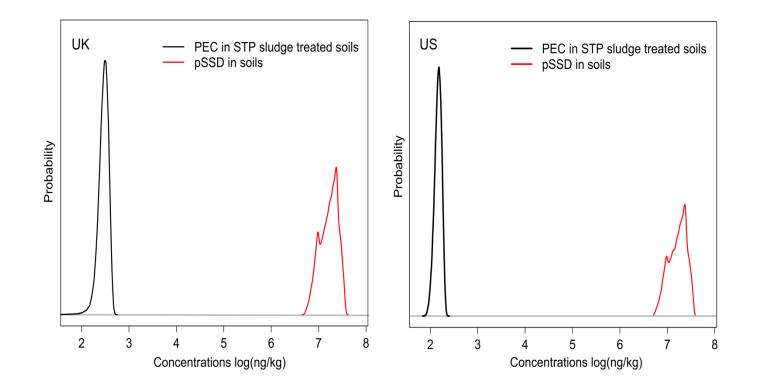
Data rounded off to the nearest whole number

Environmental Risk Assessment

Details of data for creating the pSSD


- 12 relevant studies
- 26 values
- Endpoints selected: mortality and malformation, growth inhibition, reproductive impairment and acute immobilisation
- Relevant assessment factors used to account for chronic toxicity and to arrive at No Observed Effect Concentration


Probabilistic species sensitivity distribution (pSSD) for nano-Au in fresh water and soils


Probability distributions of the PECs and the pSSDs for nano-Au in surface water

Probability distributions of the PECs and the pSSDs for nano-Au in agricultural soils

CONCLUSIONS

SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference 9-11 March 2015, Venice

Conclusions

- Total amount of nano-Au consumed in a year
 - VK: 540 kg
 - > US: 2700 kg
- Significant release to the water compartment from therapeutics
- nano-Au concentration is surface water (0.0026 to 0.725 ng/L) is similar to background concentrations in freshwater (<1ng/L to 50 ng/L)
- nano-Au concentration in sludge (126 &145 µg/kg) is less than gold present in sludge (790 µg/kg - Sweden)
- No risk from nano-Au to aquatic and soil organisms, but more toxicity studies required

Prof. Jamie Lead Prof. Bernd Nowack

Prof. Peter Dobson

Prof. Konrad Hungerbühler

Tianyin Sun

Dr. Julian Clark

Prof. Richard Owen

Acknowledgement: NIHR Horizon Scanning Centre at

SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference 9-11 March 2015, Venice

Indrani Mahapatra

