

Life cycle oriented guidelines for the sustainable competitiveness of nanoproducts

C. Som, I. Hincapie, C. Coll, R. Hischier, D. Notter, B. Nowack, J. Güttinger, E. Zondervan, T. van Harmelen

Present situation for SMEs

Nanomaterials are expected to be key for the innovation

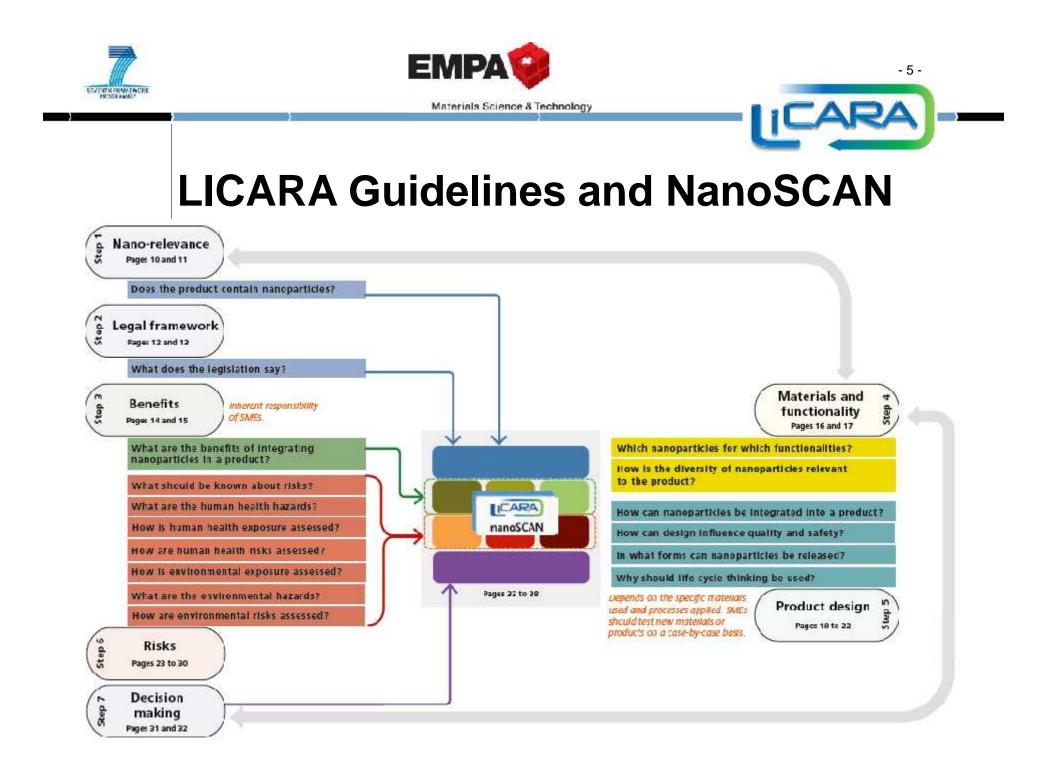
Open questions:

- Specific benefits of nanomaterials?
- Legal issues?
- Nanospecific risks for the environment and health?
- Environmental sustainability of nanoproducts?
- LCA and Risk assessment (RA) is too costly for SMEs
- Uncertainty about benefits and risks
- Information is fragmented and dispersed -> not available to SMEs

Goals of the project LICARA

Support for

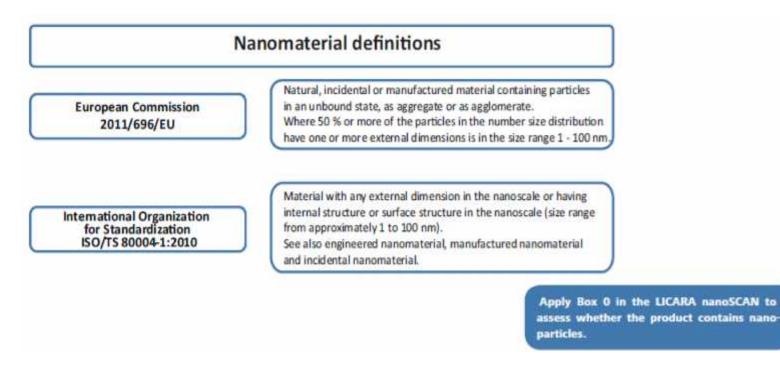
- 1. the development of safe and sustainable nanoproducts
- 2. systematic and transparent assessment
- 3. documentation of benefits and risks of nanoproducts



Output of the project LICARA

Content of the Guidelines

- Proposal for a systematic proceeding in order to assess benefits and risks of a nanomaterial or nanoproduct qualitatively.
- Integrated knowledge about benefits and risks based on the state of research and experience in the LICARA consortium
- Interfaces to the semi-quantitative NanoSCAN-Tool



Step 1: Nano-relevance

- Different Definitions of EU and ISO
- Sectorspecific definitions
- Definitions are still under development

Step 2: Legal framework

Generic legislation

- REACH (Registration, Evaluation, Authorization and Restriction of Chemicals)
 - 31 May 2013 registration of chemicals above 100 tonnes
 - > 31 May 2017 registration of chemicals above 1 tonnes
 - No specific nanoregistration
- Chemical Agency Directive (CAD)
- Classification, Labelling and packaging (CLP)
- General Product Safety Directive (GSPD)

Specific legislation

e.g. cosmetics, biocides, food, food contact materials

These legislative aspects are dealt with in a very simple way in LICARA nanoSCAN Box 0.

Step 3: Benefits of nanomaterials

Integration of nanoparticles in products may lead to Improved:

Environmental performance:

- Ighter materials (resource savings),
- resistant surfaces (prolonged product lifetime)

Economic performance:

- reduction of costs by e.g. easy handling, saving precious rare materials, materials savings)
 Social performance:
- improved hygiene
- improved safety of products

Apply Boxes 1-3 in the LICARA nanoSCAN to assess whether the nanoparticles bring benefits to the product.

Step 4: Materials & functions

Nanoparticle type Potential functional effects	Ag	ZnO	TiO		4		-				-		-			MgO/
			SiO2	Anatase	Rutile	Al ₂ O ₃	"nanoclay"	СВ	CNT	MWCNT	SWCNT	Fe ₂ O ₂	ZrO ₂	CeO ₂	CuO	Mg(OH)
Abrasion resistance		v	v			~	~		1							
Antimicrobial activity	V	*		~	V										×	V
Antistatic	~							v	~		~					
Carrier of active agents			v				V									
Catalyst															×	V
Dirt repellent		•	v	~												
Easy to clean				~												
Electrical conductivity	v		1					V	V		1					
Flame relardant			v	~	~	~	v		~	~	~					~
High chemical resistance		11	2			V			11							
Hydrophobic (water repellent)		*	V	v	V											
Hydrophillic			v						111							
Magnetic												V				
Mechanical (stiffness and hardness)			V			~			V	v	~		v	V		
Optical (UV reflection)		~			~							~		4		
Photo catalytic activity		v	-	V	V				1							
Pigment		*		~		~		~				v				
Scratch resistance		~				~							4	1		
Self-cleaning	V	v	v	V	V											
Thermal conductivity	V								~	~	1					
Thermal insulation		~	v	~	~				v	~	4					

Step 5: Product - Design

"Stability factors"	Stability of NM in the matrix material					
	Tends to be higher	Tends to be lower				
Compatibility between NM and their matrix material (fibre polymer, coating)	NPs exhibit high wettability	NPs exhibit low wettability				
Location of NPs in the product	Fully embedded in the matrix	Exposed on the material surface				
Bond between NPs and the matrix	Bonds are covalent	Bonds are non- covalent				
Intrinsic properties of the NPs:photocatalytic activity of NPsstability of NPs against aging	Not photocatalytic High stability	Photocatalytic Low stability				
Resistance of matrix material to abrasion or chemical attack	Resistant	Not resistant				
Mechanical properties of the matrix material	flexible	brittle				
Functional barrier (e.g. coating, plastic layer)	Functional barrier is present	Functional barrier is absent				
Closed systems, e.g. fuel cells, batteries, solar cells.	System is fully contained	System is not contained				

Step 6: Risk

Step 6: Health effects

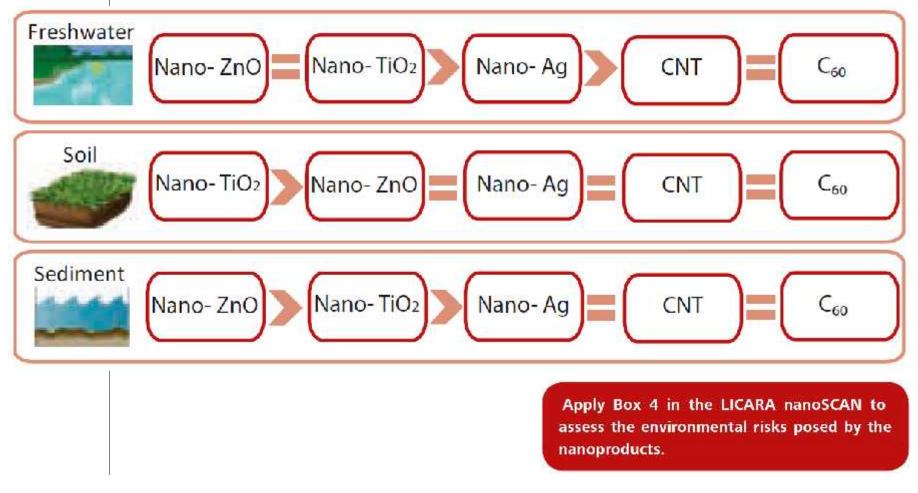
				SiO ₂			C	СВ	
Hazard potential	Ag ZnO		TiO ₂	amorph ous	Al ₂ O ₃	Nano- clay	Rigid		Flexible
Acute toxicity							-		
- via inhalation	-/+	2	-	-/+	-/+	n.a.	-/+*	-/+*	n.a
- via ingestion	(.		-	-	-	-	n.a.	-	-
 via skin contact 			-	-	n.a.	n.a.	n.a.	-	n.a.
Mutagenicity	-		-	-/+	-/+	n.a.		-	+
Chronic toxicity (exp	pected	l long-te	erm effe	ects)			1. 	I	
- via inhalation	+	+	+	+	-/+	n.a.	++	+	++
- via ingestion	-/+	-/+		-	-/+		n.a.	n.a.	1 9 0
- via skin contact		n.a.		-	n.a.	n.a.	n.a.	n.a.	•

++ high toxicity, + medium toxicity, +/- weak evidence for toxicity – low toxicity n.a. no data available

Step 6: Exposure, release

Nano- related activity Spraying nano-enabled coatings	Potential human exposure High	Risk Management Measures for reducing exposure Ventilated spraycabin Face mask
Handling large amounts of powdered nanomaterial	High	Enclosed systems Ventilation Face mask
Batch mixing of powdered nanomaterial with liquid	Medium	Enclosed system Reduce mixing speed Ventilation Face mask
Handling small amounts of powdered nanomaterial	Low	Enclosed systems Ventilation Face mask
Brushing nano-enabled coatings	Low	N/A
Careful use of a solid nano- enabled products	Low	N/A

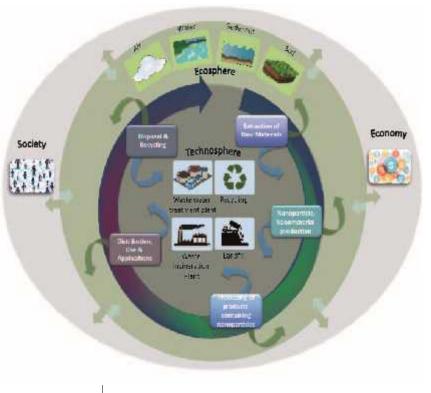
Apply Boxes 4–6 in the LICARA nanoSCAN to assess the human health risks posed by the nanoproduct.



Step 6: Behaviour of nanomaterials in technical systems

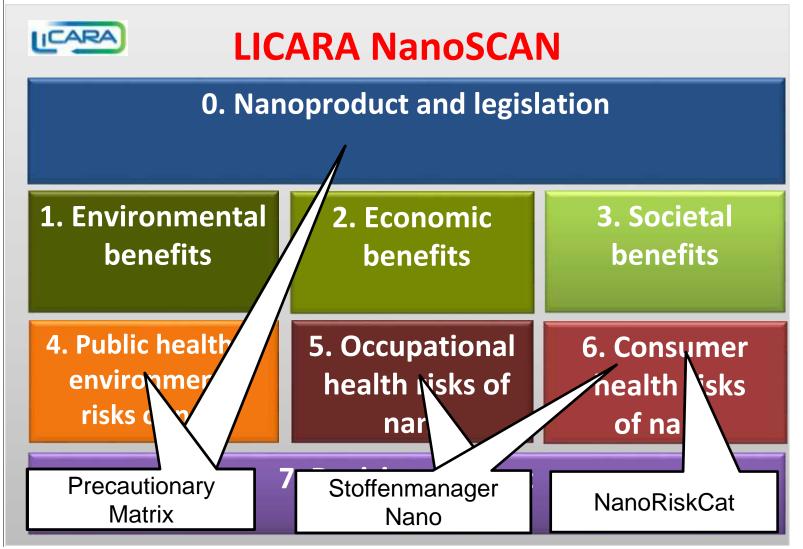
Wastewater treatment plants	In general, the vast majority (around 95%) of nanomaterials are removed from water and end up in sludge. Applying sewage sludge to soils represents one of the major flows of nanomaterials into the environment
Waste incineration plants	European waste incineration plants are equipped with flue gas cleaning systems that remove the vast majority (>99.9%) of the nanoparticulate fraction. Nanomaterials therefore end up in filter ash or bottom ash and subsequently go to landfill
Landfills	The behaviour of nanomaterials in landfills is so far unknown
Recycling	No data are as yet available about the fate of nanomaterials during recycling, but it is expected that release may occur to some extent during recycling operations as product matrices may be destroyed

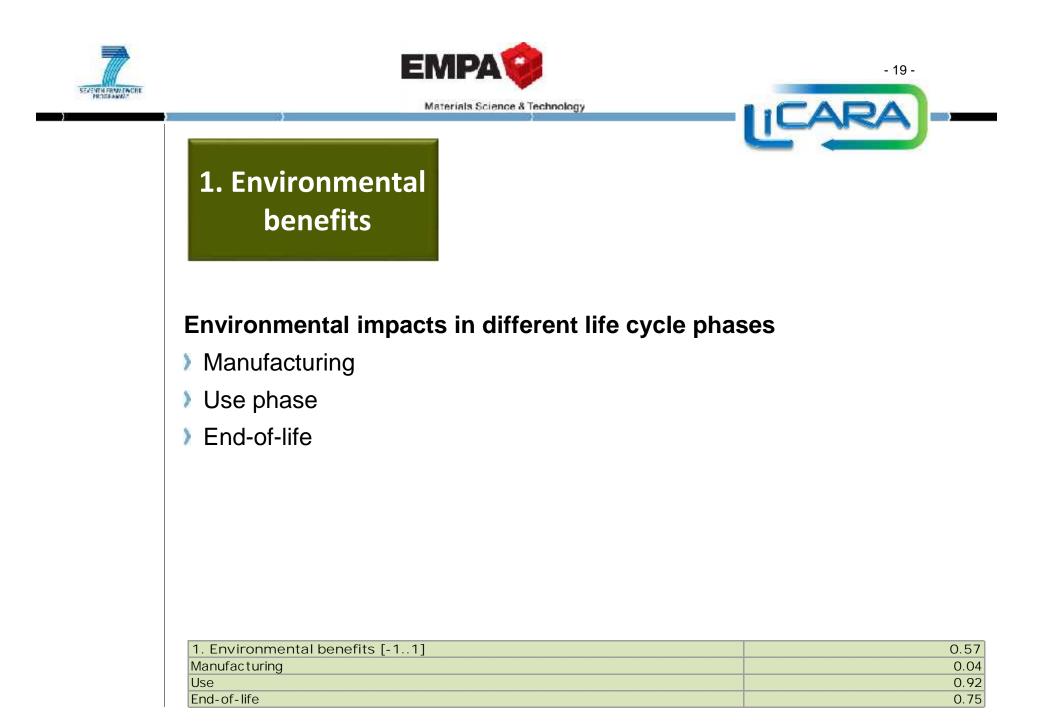
Step 6: Relative environmental risks

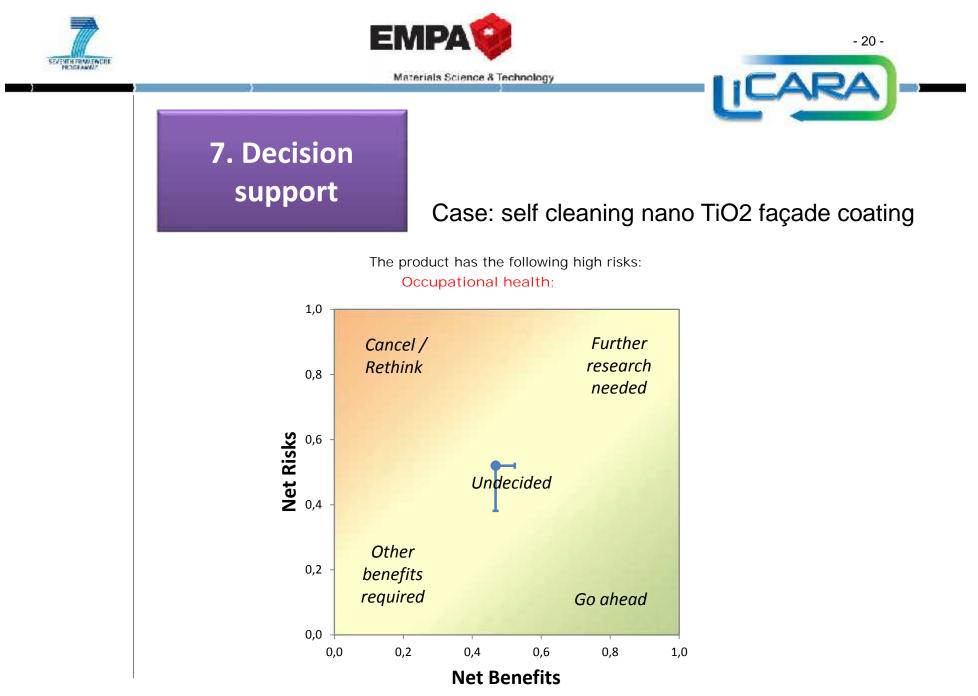


Step 7: Decision making

Life cycle thinking


- Identify opportunities to increase benefits (e.g. material and energy savings) and innovation
- Select nanomaterials, functions and product design to minimalize the risks and optimize the benefits during the whole product life cycle.
- → Hedge against misinvestments
- → Comply with regulations
- → Gain competitive advantage


Apply Box 7 in the LICARA nanoSCAN facilitates decision making on the nanoproducts.



SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference, Mar 9., 2015, Venice 🔰 By von Harmelen, Zondervan

SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference, Mar 9., 2015, Venice 👔 By von Harmelen, Zondervan

Materials Science & Technology

Thank you for your attention

Thanks to the LICARA consortium and EU FP7,

I. Linkov, J. Höck, T. Walser,

D. Hart (proof reading)

