

Structure of the lecture

* BACKGROUND

- Why are things different at nanoscale ?
- Nanomaterial toxicity
- Computational models for toxicity prediction
* COMPUTATIONAL MODELLING OF NANOMATERIAL TOXICITY
- What is (nano)QSAR ?
- 3 Case Studies
© CONCLUSIONS and FUTURE WORK

Why are things different at nanoscale?

Larger surface area

$=(3 \mathrm{~cm} \times 3 \mathrm{~cm} \times 6$ faces $\times 8$ cubes $)$
$=432 \mathrm{~cm}^{2}$

$=(2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 6$ faces $\times 27$ cubes $)$ $=648 \mathrm{~cm}^{2}$

Quantum effects

Nanomaterial Toxicity

Nano Particles, Mega Problems?

Toxicity Testing

Why we need computational models?

NEED: The European REACH legis/ation promotes the use of non-animal testing methods

AIM: to satisfy this need!!!

What is nano-(Q)SAR ?

A (Q)SAR is a statistical model that relates a set of physicochemical descriptors of a chemical compound to its biological activity.

Descriptors

Tree Induction From Genetic Programming

GPTree: "in-house" software
Genetic Algorithms

explore	•	Starts at random points
solution space	•	Recombining (i.e., crossover)
	Optionally changing (i.e., mutation)	

(1) Randomly generate a pre-specified number of solutions, encoded as fixed size vectors.
(2) Either form a new generation or replace individuals in the population by

Genetic Algorithm

2a. Selecting parents using the fitness function.
2b. Crossover the parents to form one or more offspring.
2c. Optionally mutate part of the solution.
(3) Continue with Step 2 until a pre-specified number of generations or children have been grown, or until a good solution is found.

Tree Induction From Genetic Programming

GPTree: Methodology

- DeLisle, R. K. and Dixon, S. L. (2004) Induction of Decision Trees via Evolutionary Programming Journal of Chemical Information and Computer Sciences, 44, 862-870.- evolutionary programming of trees

1. Divide data into training and test sets
2. Generate the $1^{\text {st }}$ population of trees

- randomly choosing a row (i.e. a compound), and column (i.e. descriptor)

Descriptors

- Using the value of the slot, s, to split, left child takes those data points with selected attribute values $<=s$, whilst the right child takes those $>s$.

Tree Induction From Genetic Programming

GPTree: Methodology

- If a child will not cover enough rows (e.g. 10% of the training rows), another combination is tried.
- A child node becomes a leaf node if pure/near pure, whilst the other nodes grow children.
-When all nodes either have two children or are leaf nodes, the tree is fully grown and added to the first generation.
-A leaf node is assigned to a class label corresponding to the majority class of points partitioned there.

3. Crossover and Mutation

Tree Induction From Genetic Programming

The key parameters

y COL	Column no containing the class of the data set.
n Gen	No of generations required
n Trees	No of treesrequired in each generation
No. in tournament	No of trees in the tournament to sort out the best for crossover operation
Winn. Inc.	Winners included (The N best trees are placed directly into the next generation, This was to allow ELITISM)
L.I.I.A.T	Low increase in accuracy tolerance (It forces a mutation for every tree if no improvement in the best accuracy has been seen for this many generations.)
Mutation	\% age of mutation
C in L.N	Minimum no of cases in a leaf node

Case Study 1: Dataset

Case Study 1: Results

Case Study 2: Dataset

Compounds	105 nanoparticles with different surface-modifying molecules
Toxicity Data	Cellular uptake in pancreatic cancer cell lines

Threshold value	Cellular uptake values:170-27 542 nanoparticles per cell Threshold value: 10000 nanoparticles per cell 18 nanoparticles with significant cellular uptake (CLASS 2) 87 nanoparticles with poor cellular uptake (CLASS 1)

Case Study 2: Dataset

Descriptors

Same core
Nanoparticles \longrightarrow Different surface-modifying molecules \longrightarrow Conventional descriptors

Fourches et al. (2010)

- Data cleaning
- Structural Conversion

SMILES strings $\longrightarrow \quad$ 2D molecular graphs
$(C=N C(=C(N=1) C 10) N=C(N=1) N] C N C(=C C=C(C 1) C(0)=0) C$

- Manual inspection

4 structure unmatched-excluded

- Descriptor Calculation

690 Dragon Descriptors

- Descriptor Cleaning

389 Dragon descriptors retained

Case Study 2: Data Pre-processing

Case Study 2: GPTree settings

The key parameters

EPTREE Train.txt Test.txt 390606001603122

Column no containing the class of the data set	390
No of generations required	60
No of trees in each generation required	600
No of trees in the tournament	16
Winners included	0
Low increase in accuracy tolerance	5
\% age of mutation	50%
Minimum no of cases in a leaf node	2

Case Study: Results

GPTree Results


```
Elie Edit Format view Help
Gan 22 Tree 38
                                    M,
```



```
        parent 2 Ler= -1 pighe -1
        parene zaserv - [ [right -1 
        TestnelassFrogiored
        Tosi rows3 covorod:
    [A], col 108 Val 0.1188000 (From row 24)
        Mi=9,
```



```
    [9]gnteaf
        parentes Left -1 Reghte -1
        Test% ciassereeg : rnowe3 covered
        T3a1722row%, Cover Sg
        тese rows covered:
    Ly%&&ear
```



```
        TestrchassFregi [home covered]
        24; 76, 7% covered
    [8]antea
        parent 4 lert -1 pighe -1
        TestcilassFreq: mmone covered] [{]
    Train, %%s, covered
    [9] col 230 val 0.000000 (from row
```



```
        5, 14, 28, 31, 79, 80
    [22]leaf node
        parent 20 Left -1 Right -1
        TrainclassFreq: [2: 1]], [2: 1]
        Train rows covered
        Test rows covereet.
    Total covered 84, Lead nodes 12 Accuracy }
```


Case Study: Results

Training accuracy: 96\%
9 descriptors out of 389

Case Study: Results

DRAGON descriptor	Description	Block
JGI2	mean topological charge index of order 2	2D autocorrelations
JGI5	mean topological charge index of order 5	2D autocorrelations
ATSC8m	Centred Broto-Moreau autocorrelation of lag 8 weighted by mass	2D autocorrelations
ATSC3v	Centred Broto-Moreau autocorrelation of lag 3 weighted by van der Waals volume	2D autocorrelations
MATs6i	Moran autocorrelation of lag 6 weighted by ionization potential	2D autocorrelations
GATS7s	Geary autocorrelation of lag 7 weighted by I- state	2D autocorrelations
Eig05_EA(dm)	eigenvalue n. 5 from edge adjacency mat. weighted by dipole moment	Edge adjacency indices
SpMAD B(v)	spectral mean absolute deviation from Burden matrix weighted by van der Waals volume number of rotatable bonds	2D matrix-based descriptors
RBN	C2	Constitutional indices

Case Study 3: Data Collection

Carbon Black N1

Aluminuim Oxide N10
Diesel Exhaust N2 Cerium Oxide N11
Japanese Nanotubes N3
Fullerene N4
Polystyrene Latex Beads N5
Polystyrene Latex Beads N6
Polystyrene Latex Beads N7
Aluminuim Oxide N8
Nickel Oxide N12
Silicon Oxide N13
Zinc Oxide N14
Titanium Dioxide Rutile N15
Titanium Dioxide Anatase N16

Aluminuim Oxide N9
Silver N17
Silver N18

Characterization

- Particle size and size distribution were analysed using a Malvern MasterSizer 2000
- Particle shape was analysed using LEO 1530 Scanning Electron Microscope (SEM) or Philips CM20

Transmission Electron Microscope (TEM)
-Surface area and porosity were measured using TriStar 3000 BET
-The free radical activities were measured by EPR
-Particle reactivity in solution, the dithiothreitol (DTT) consumption

- Metal Content was measured
-Charge: z potential was measured using Malvern Instrument's Zetasizer Nano instrument

Case Study 3: Data Collection

Case Study 3: Data Visualization

Multidimensional data visualization:

Heat maps with hierarchical clustering
Low
High

LDH.
LDH 2
LDH. 3 LDH 4
LDH. 4
Apoptesis. Apor locis2 $A p$ Ppess3
ApOPGEE.4
Misblityrt
Mablity
Mablityz
Wablitys
Mablitye4 TV =crosis. 1 Recroses Necrosels 3 Ne=re= $=4$ thecroses 4 Ha=molysis
MT MT1
Cellimgrphalogy
Dicus. Earlyapoplotio
Cicx-ext=00

Case Study3: Model Development

Clustering/Grouping based on Principal Component Analysis

26 Wang, Xue Z., et al. "Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles." Nanotoxicology 8.5 (2014): 465-476.

Conclusions

- In LEEDS, we have developed a decision tree software which can be successfully employed for nano-(Q)SAR investigations
- (Q)SAR tools are useful for identifying the properties that influence the toxicity
- Many potential profits:
- An alternative, fast and cheap way of hazard assessment
- Risk Reduction
- Safety-by-design

Future Work

No	Dataset	Nanomaterials	Toxicity Endpoint	Characterization
$\mathbf{1}$	Wang et al. (2014)	18 NMs (carbon-based and metal oxides)	LDH release, apoptosis, pro-inflammatory effects, haemolysis, MTT, DiOC6, cell morphology assay	size, surface area, morphology, metal content, reactivity, free radical generation and zeta potential
$\mathbf{2}$	Shaw et al. (2008)	50 NMs with diverse core structures	ATP content, reducing equivalents, apoptosis, mitochondrial membrane potential	core composition, coating type, surface modification, size, relaxivities and zeta potential
$\mathbf{3}$	NANOMMUNE project	18 NMs	In vitro assays	core, coating, 2 sizes and zeta potential

SUSTAINABILITY of NANOTECHNOLOGY

Thank you!

