

NanoSAR: Structure-Activity Relationship Model for the Toxicity of nono particles

Ceyda OKSEL

Structure of the lecture

BACKGROUND

- Why are things different at nanoscale ?
- Nanomaterial toxicity
- Computational models for toxicity prediction
- COMPUTATIONAL MODELLING OF NANOMATERIAL TOXICITY
 - What is (nano)QSAR ?
 - 3 Case Studies

CONCLUSIONS and FUTURE WORK

Nanomaterial Toxicity

Nano Particles, Mega Problems?

Toxicity Testing

Why we need computational models?

NEED: The European REACH legislation promotes the use of non-animal testing methods AIM: to satisfy this need!!!

What is nano-(Q)SAR ?

A (Q)SAR is a statistical model that relates a set of physicochemical descriptors of a chemical compound to its biological activity.

Descriptors

GPTree: "in-house" software

Genetic Algorithms		
explore solution space	 Starts at random points Recombining (i.e., crossover) Optionally changing (i.e., mutation) 	

Genetic Algorithm	 (1) Randomly generate a pre-specified number of solutions, encoded as fixed size vectors. (2) Either form a new generation or replace individuals in the population by 2a. Selecting parents using the fitness function. 2b. Crossover the parents to form one or more offspring. 2c. Optionally mutate part of the solution. (3) Continue with Step 2 until a pre-specified number of generations or children have been grown, or until a good solution is found.

GPTree: Methodology

• DeLisle, R. K. and Dixon, S. L. (2004) Induction of Decision Trees via Evolutionary Programming *Journal of Chemical Information and Computer Sciences*, 44, 862-870.- evolutionary programming of trees

1. Divide data into training and test sets

2. Generate the 1st population of trees

- randomly choosing a row (i.e. a compound), and column (i.e.

descriptor)

- Using the value of the slot, *s*, to split, left child takes those data points with selected attribute values $\leq s$, whilst the right child takes those > s.

GPTree: Methodology

- If a child will not cover enough rows (e.g. 10% of the training rows), another combination is tried.

- A child node becomes a leaf node if pure/near pure, whilst the other nodes grow children.

-When all nodes either have two children or are leaf nodes, the tree is fully grown and added to the first generation.

-A leaf node is assigned to a class label corresponding to the majority class of points partitioned there.

3. Crossover and Mutation

The key parameters

y COL	Column no containing the class of the data set.
n Gen	No of generations required
n Trees	No of treesrequired in each generation
No. in tournament	No of trees in the tournament to sort out the best for crossover operation
Winn. Inc.	Winners included (The N best trees are placed directly into the next
	generation, This was to allow ELITISM)
L.I.I.A.T	Low increase in accuracy tolerance (It forces a mutation for every tree if no
	improvement in the best accuracy has been seen for this many generations.)
Mutation	% age of mutation
C in L.N	Minimum no of cases in a leaf node

Case Study 1: Dataset

Compounds	75 Compounds					
Toxicity Data	Concentration lethal to 50% or	f the population, LC50,				
(4 classes)	$1/I \circ \sigma(I \cap S_0)$ of vibrio fischeri a biolumininescent bactorium					
		.,				
Descriptors	1069 molecular descriptors calculated by DRAGON					
-	D	1				
	l Parame	eters				
	y COL	1070				
	y COL n Gen	1070 60				
	y COL n Gen n Trees	1070 60 600				
	y COL n Gen n Trees No. in tournament	1070 60 600 16				
	y COL n Gen n Trees No. in tournament Winn. Inc.	1070 60 600 16 0				
	y COL n Gen n Trees No. in tournament Winn. Inc. L.I.I.A.T	1070 60 600 16 0 5				
	y COL n Gen n Trees No. in tournament Winn. Inc. L.I.I.A.T Mutation	1070 60 600 16 0 5 66.7%				

Case Study 1: Results

Case Study 2: Dataset

Compounds	105 nanoparticles with different surface-modifying molecules
Toxicity Data	Cellular uptake in pancreatic cancer cell lines
Threshold value	Cellular uptake values: 170-27 542 nanoparticles per cell Threshold value: 10 000 nanoparticles per cell 18 nanoparticles with significant cellular uptake (CLASS 2) 87 nanoparticles with poor cellular uptake (CLASS 1)

D. Fourches, D. Pu, C. Tassa, R. Weissleder, S.Y. Shaw, R.J. Mumper, and A. Tropsha, Quantitative nanostructure–activity relationship modeling, ACS Nano 4 (2010), pp. 5703–5712.

16

Case Study 2: Dataset

Descriptors

- Data cleaning
- Structural Conversion

SMILES strings

(C=NC(=C(N=1)C10)N=C(N=1)N)CNC(=CC=C(C1)C(0)=0)C

- Manual inspection 4 structure unmatched-excluded
- Descriptor Calculation

690 Dragon Descriptors

- Descriptor Cleaning
- 389 Dragon descriptors retained

Fourches, Denis, Eugene Muratov, and Alexander Tropsha. "Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research." *Journal of chemical information and modeling* 50.7 (2010): 1189-1204.

Case Study 2: Data Pre-processing

Data splitting

Va Santes Notes en 35 0 Chilescess201 0(01 71 0025023020000000 18 0-01000(-0(01	Celuiar ny taka 2764 1862
35.0 C1Nr2ucce20/ 0/01 21.000200220000009 18.0-C1000(+0/01	2764 1862
21 GODIOCIDOCIO 18 O-C1000(-0)01	1862
18 O-C1000(-0)01	22/01/2
	1737
17 Clc1ccc2VC(+0)0C(+0)c2c1	1013
1132 (0.30-0000-0020) (0.3	14/9
21 Cleft (2C)=0(0C)=0(c2oc1Cl	1718
4 001(0)00(+0)001+0	1266
Pri/O=C1OO(=O)r2cc(cc)cccc1c20(4(=O)=O	1288
105 00(-0)CN(CCN)CC(-0)00(-0)C1(CCN)CC(-0)00(-0)C1	1253
	1202
TFO=C000000;=0(0)	11/4
52 CCC/CY/CIN	1174
49.0-c1002/0002/00/-0/0/	1145
St compaction address	1145
39 CC(-010C/C)-0	1122
100 C-0100(-0)001-0	1095
47 COECCIOCE=0(CO)=OCCECCIOCC	307.4
103 00(-0)00100(-0)001-0	1071
50 O-C1CCC/C/-OlOlis1ceccs1	1047
E01 O=C100002=0001	977
5 0-0100(-0)0-01	065
00 Cc1ccc2C(+O)OC(+O)c2c1	975
16 Optionn2/2=0(00)=0(c12	1000
50 CCCCCCCCCCCCC	033
49 0+C100(+0)c2ccc3cccc1c23	912
2 E02E9(C)(C)=00000(=0)(C)E0(E)(E)(C)	891
53 CCCCCCCCC	891
50 CC1(C)CCC(-C)CC1+C	671
26. O=C1OC(=O)c2ece(e2ecee1e23/4(=O)=O	86.1
34 0-010N(00N200(-0)00(-0)02)00(-0)01	851
41 0-0100j-0j02000012	061
37 CC1CC3+090C(+0)C2	812
33 CC(-0)001C(00)C)-0/0(-0)0C1-0	812
104 T c Tecej1 (c20(=0)00(=0)c12	612
52 Clofters (Cl) (2C(-C)OC(-O) (17	/54
102 O. C1OC/ Oju2cope12	794
24 OFGY003F0(0202F02012	1/5
18 O-C1OS(-O)(-O)c7caecc42	158
58 CC(C)(C)N	724
The tablead activ	107
10.4001-0(0)0-0(0001-0	F5-1
14 Fe1c(F)c(F)c20(-0)00(-0)c2c1F	676
51 Glc1r(C)(c)C)=O(C)=O(c?r.1C)	1.75
SU CONCICU 9.	678
22 0 C100/ 0(C2C30C/C C3)C12	660
28 ACCRACKACKACKAG-O)COC/-ORACKACKACKACKA	160
51 000(N)00	645
43 De-1- Tele/DE-20(-000C)-00-24/Te	674
	4 CC1(C)CC1-0(0C1+0 10 CC1)C(C)C(C)C(C)C(C)C(C)C(C)C(C)C(C)C)C(C)C(C)C)C(C)C(C)C)C(C)C(C)C)C(C)C(C)C(C)C)C(C)C(C)C(C)C)C(C)C(C)C)C(C)C(C)C)C(C)C(C)C)C(C)C(C)C)C(C)C(C)C)C(C)C(C)C)C(C)C(C)C)C)C(C)C)C)C(C)C)C)C)C(C)

Р	at	tei	rn	of	sp	litt	ting	5				
P Z 1. A 2. 3. 4. 5. 6. 7. 8. 8.	Pat T T T T T T	ter T T T T T T V	rn T T V T T T V	of T V T T T T V	SP T T V T T T V	litt T T V T T T V	T T T T T T V	y T V T T T T V	T V T T T V V	T 7 7 7 7 7 7 7	T T V 80% tra 20% val	ining lidation
10.	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т		

Case Study 2: GPTree settings

The key parameters

1 EFTREE Train.txt Test.txt 390 60 600 16 0 5 1 2 2

Column no containing the class of the data set	390
No of generations required	60
No of trees in each generation required	600
No of trees in the tournament	16
Winners included	0
Low increase in accuracy tolerance	5
% age of mutation	50%
Minimum no of cases in a leaf node	2

Case Study: Results

GPTree Results

File Edit Format	View, Help	
Gen 22 Tree 38	view rieu	
XOVER: Itree 20	6 rtree 309 idL 20, idR 21 1 171 val 0.063000 (from row 27)	
[1] co	Parent -1 Left 9 Right 1 Train ClassFreq: [1: 69], [2: 15], Test ClassFreq: [1: 17], [2: 4], 1 108 val 0.126000 (from row 7)	
[2]_co	Parent 0 Left 4 Right 2 Train classFreq: [1: 27], [2: 7], [Test classFreq: [1: 9], [2: 1], 1 230 val 0.000000 (from row 40)	
[3] Le	Parent 1 Left 18 Right 3 Train ClassFreq: [1: 20], [2: 3], Test ClassFreq: [1: 9], [2: 1], af node	
Right	Parent 2 Left -1 Right -1 Train ClassFreq: [1: 3], Test classFreq: [none covered] Train rows covered: 8, 25, 33, Test rows covered:	
[4] co	1 108 val 0.118000 (from row 24)	
[5] co	Parent 1 Left 5 Right 8 Train classFreq: [1: 7], [2: 4], Test classFreq: [none covered] 92 Val 1.170000 (from row 7)	
[0] Let	Parent 4 Left 7 Right 6 Train ClassFreq: [1: 5], [2: 3], Test ClassFreq: [none covered] af node	
Right	Parent 5 Left -1 Right -1 Train ClassFreq: [1:5], Test classFreq: [none covered] Train rows covered: 3, 42, 46, 54, 59, Test rows covered:	
[7] Lea	af node	
Lerc	Parent 5 Left -1 Right -1 Train classFreq: [2:3], Test classFreq: [none covered] Train rows covered: 24, 76, 77, Test rows covered:	
[8] Lea	af node	
Right	Parent 4 Left -1 Right -1 Train ClassFreq: [1: 2], [2: 1], Test ClassFreq: [none covered] Train rows covered: 4, 7, 78, Test rows covered:	
[9] co	1 230 val 0.000000 (from row 40)	
Luit	Parent 0 Left 11 Right 10 Train classEceq: [1: 42]. [2: 8]. 5, 14, 28, 31, 79, 80, Test rows covered: 7 8 9	
[22] Le	eaf node	
	Parent 20 Left -1 Right -1 Train ClassFreq: [2: 3], Test ClassFreq: [1: 1], [2: 1], Train rows covered: 15, 35, 81, Test rows covered:	
•• Total cover Test Total	ed 84, Leat nodes 12 Accuracy 96.428571 covered 21, Accuracy 80.952381	>

20

Case Study: Results

Case Study: Results

DRAGON descriptor	Description	Block		
JGI2	mean topological charge index of order 2	2D autocorrelations		
JGI5	mean topological charge index of order 5	2D autocorrelations		
ATSC8m	Centred Broto-Moreau autocorrelation of lag 8 weighted by mass	2D autocorrelations		
ATSC3v	Centred Broto-Moreau autocorrelation of lag 3 weighted by van der Waals volume	2D autocorrelations		
MATs6i	Moran autocorrelation of lag 6 weighted by ionization potential	2D autocorrelations		
GATS7s	Geary autocorrelation of lag 7 weighted by I- state	2D autocorrelations		
Eig05_EA(dm)	eigenvalue n. 5 from edge adjacency mat. weighted by dipole moment	Edge adjacency indices		
SpMAD B(v)	spectral mean absolute deviation from Burden matrix weighted by van der Waals volume	2D matrix-based descriptors		
22 RBN	number of rotatable bonds	Constitutional indices		

Case Study 3: Data Collection

Characterization

- •Particle size and size distribution were analysed using a Malvern MasterSizer 2000
- •*Particle shape* was analysed using LEO 1530 Scanning Electron Microscope (SEM) or Philips CM20 Transmission Electron Microscope (TEM)
- •Surface area and porosity were measured using TriStar 3000 BET
- •*The free radical activities* were measured by EPR
- •*Particle reactivity in solution*, the dithiothreitol (DTT) consumption
- •Metal Content was measured
- •Charge: z potential was measured using Malvern Instrument's Zetasizer Nano instrument

Case Study 3: Data Collection

Toxicological Evaluation

LDH Release

Apoptosis

Viability

Case Study 3: Data Visualization

Case Study3: Model Development

Clustering/Grouping based on Principal Component Analysis

Conclusions

- In LEEDS, we have developed a decision tree software which can be successfully employed for nano-(Q)SAR investigations
- (Q)SAR tools are useful for identifying the properties that influence the toxicity
- Many potential profits:
 - An alternative, fast and cheap way of hazard assessment
 - Risk Reduction
 - Safety-by-design

Future Work

No	Dataset	Nanomaterials	Toxicity Endpoint	Characterization
1	<u>Wang et al. (2014</u>)	18 NMs (carbon-based and metal oxides)	LDH release, apoptosis, pro-inflammatory effects, haemolysis, MTT, DiOC6, cell morphology assay	size, surface area, morphology, metal content, reactivity, free radical generation and zeta potential
2	<u>Shaw et al. (2008</u>)	50 NMs with diverse core structures	ATP content, reducing equivalents, apoptosis, mitochondrial membrane potential	core composition, coating type, surface modification, size, relaxivities and zeta potential
3	NANOMMUNE project	18 NMs	In vitro assays	core, coating, 2 sizes and zeta potential
4	<u>Puzyn et al. (2011</u>)	17 metal oxide NMs	Cytotoxicity (EC50)	12 different quantum-mechanical descriptors
5	MARINA project	9 NMs	In vitro assays	experimental descriptors
6	<u>Weissleder et al. (2005</u>)	109 NMs with the same core but different surface modifiers	Cellular uptake	theoretical descriptors
7	B. Yan (private communication)	80 surface-modified MWCNTs	Protein binding activities, cell viability, nitrogen oxide generation	theoretical descriptors
8	<u>Liu et al. (2011</u>)	9 metal oxide NMs	Cytotoxicity (PI uptake)	a set of 10 descriptors
9	<u>Sayes and Ivanov (2010</u>)	42 NMs with two cores (differing in concentrations)	Cellular membrane damage (LDH release)	primary particle size, size in water and buffered solutions, concentration and zeta potential
10	ENPRA project	10 NMs	In vitro/in vivo assays	size, dustiness, surface area and impurities
11	<u>Gajewicz et al. (2014</u>)	18NMs	Cellular viability (LC50)	18 quantum mechanical descriptors, 11 image descriptors, 3 experimental descriptors

SUSTAINABILITY of NANOTECHNOLOGY

Thank you !

29