Feasibility of using *in vitro* toxicity studies for Human Risk Assessment of nanomaterials

11th March 2015 – Venice (Italy)

Gemma Janer, Socorro Vázquez-Campos , <u>Joan Cabellos</u> (Leitat Technological Center, Spain) Craig Poland (Institute of Occupational Medicine, UK) Enrico Bergamaschi (University of Parma, Italy) Lucia Migliore (University of Pisa, Italy) Anna Costa (Istituto di Scienza e Tecnologia dei Materiali Ceramici, Italy)

SUN-SNO-GUIDENANO Sustainable Nanotechnology Conference 2015 Monday, Mar. 9 – Wednesday, Mar. 11 Venice, Italy Become a Corporate Member

Presentation Overview

- 1. Introduction to the Sanowork Project
- 2. The "Sanowork Approach" on how to derive human threshold hazard values using *in vitro* toxicity data
- 3. Proof of Concept on correlation between in vitro and in vivo data
- 4. Risk Assessment Strategy
- 5. Example of in vitro toxicity assay evaluating hazard on AgNPs
- 6. Risk assessment on ZrO_2 nanomaterials in a spraying exposure scenario.
- 7. Conclusions

The Sanowork Project

«SAFER BY DESIGN» Risk Remediation Strategies

SEVENTH FRAMEWOR

PROGRAMME

Sanowork

OBJECTIVE: develop and implement "**Design Options**" based on **Risk Remediation Strategies** mainly Surface Engineering, as **Primary Prevention Control Measure** to manage the potential occupational risk of nanomaterials

SANOWORK APPROACH on how to derive human threshold hazard values by using *in vitro* data

1. Grouping of NMs expected to share mechanisms of toxicity

Group	Type of Nanomaterial	Sanowork Nanomaterials	Main mechanism of toxicity	Parameter modulating toxicity	Benchmark Nanomaterials	<i>In vitro</i> relevant endpoint
1	Low solubility, low toxicity	ZrO ₂ , TiO ₂ (NP and nanosols)	Sustained inflammation due to accumulation in lungs	Surface reactivity	AEROXIDE® TiO₂ P25	Oxidative stress / Inflammation response
2	Low solubility, high aspect ratio/fibrous	MWCNT, polyamide nanofibers, TiO ₂ nanofibers	Sustained inflammation due to physical cell damage and frustrated phagocytosis	Morphology	UICC Crocidolite Asbestos	Oxidative stress / Inflammation response
3	High ion release rate (solubility)	Agnanosols	Silver ion toxicity	Ion release rate	Silver salt	Cell viability

2. Generate experimental *in vitro* data (relevant endpoints) for Sanowork NMs and Benchmark NMs

3. Gather relevant human reference values for Benchmark NMs (with relevant *in vivo* data available from the literature)

4. By considering differences in potency *in vitro* and dosimetry, estimate *in vivo* and approximated human reference values for Sanowork NMs.

PROOF OF CONCEPT

(Correlation in vitro and in vivo data)

1. Gather in vitro and in vivo (inhalation route) data for several of TiO₂ NMs (7 publications)

References 1:Lu S. et al. Environ. Health Perspect. 2009 Feb;117(2):241-7; 2: Xu J et al. Carcinogenesis. 2010 May;31(5):927-35; 3: Rushon et al. J Toxicol Environ Health A. 2010;73(5):445-61 4a: Han X et al. Toxicology. 2012 Jul 16;297 (1-3):1-; 4b: Jiang J et al. Nanotoxicology. 2008 Mar;2(1):33-42. 5: Park et al. Arch Toxicol. 2013 Jul;87(7):1219-30 ; 6: Park et al. J Appl Toxicol. 2014 Apr;34(4):357-66; 7: Numano et al. Asian Pac J Cancer Prev. 2014;15(2):929-35.

2. Identify comparable endpoints and derive lowest effective concentration/doses

in vitro: oxidative stress & inflammation *in vivo*: Inflammation (PMN 1 in BAL, cytokine 1 in BAL, lung histopathology)

3. Apply dosimetry factors to account for differences in deposition between NMs:

4. Evaluate correlation between *in vitro* and *in vivo* equipotent concentration/doses.

RESULTS

CORRECTED EFFECTIVE DOSES/CONCENTRATIONS IN VITRO & IN VIVO

Dof	Size	In vitro Endpoint Corrected EC (cm ² /mL)		Corrected	<i>In vivo</i> Endpoint		Corrected	
Ref.	(nm)*			C (cm²/mL)			AEL (cm ² /kg)	
	35 ^R	Electron Parametric Ressonance (cell free)	>	3000	PMN number in BAL			
		DCFH (cell free)	>	1500			796	
1		LDH Release	>	52,6				
1	5 ^A	Electron Parametric Ressonance	>	3000				
		DCFH assay	>	1500			255	
		LDH Release	>	63,3				
							2854	
2	20 ^R	Cell proliferation assay	>	5,66	Oxidative stress markers, inflammatory mediators and		2002	
					histopathology evaluation	=	3993	
		Electron Spin Ressonance (cell free)	>	800	Increase neutrophils &			
	250 ^A	Electron Spin Ressonance	>	80			9	
		Lucifer Reporter (ROS release assessment)	>	0,91				
		Electron Spin Ressonance (cell free)	>	8600				
3	20 ^A	Electron Spin Ressonance	>	860			276	
		Lucifer Reporter (ROS release assessment)	>	1,42	PIVIN CONCENTRATION IN DAL.			
		Electron Spin Ressonance (cell free)	>	5700				
	25 ^{A/R}	Electron Spin Ressonance	>	570	-		187	
		Lucifer Reporter (ROS release assessment)	>	1,04				
	30 ^A			26,3		428		
	50 ^A	Cell free ROS assay		15,8			225	
4	7 ^A			104,8	PMN number in BAL	=	447	
	16 ^A			47,9			365	
_	30 ^A		=	7,02	Inflammatory cell infiltration	=	1309	
5	50 ^B		=	3,9	(NK & T cells) and Cytokine	=	438	
	30,5 ^R	IL-8 expression	=	17,1	Inflammatory coll infiltration			
6		IL-1b expression		17,1	in RAI		488	
		TNFa expression	=	51,3	III BAL			
7	20 ^A			1,54	Numer of macrophages, MIP α	=	3720	
'	25 ^R		>	1,64	lung tissue		4553	
EC:	C: In vitro Effective Concentration NO COLOR (No effects at highest concentration tested)							

LOAEL: In vivo Lowest Observed Adverse Effect Level (Intratracheal studies in rat)

* Crystalline form: R: Rutile A: Anatase B: Brookite

PMN: Polymorphonuclear cells

BAL: Bronchoalveolar lavage

DRAWBACKS

NO ADVERSE EFFECTS IN SEVERAL STUDIES

DIFFERENT ENDPOINTS

LIMITED INFORMATION FOR DOSIMETRY

CONCLUSIONS

NO CORRELATION COULD BE DEMONSTRATED BETWEEN IN VITRO AND IN VIVO EFFECTIVE CONCENTRACIONS/DOSES

FURTHER STUDIES WIDER DOSES REACHING EFFECTIVE LEVELS COMPARABLE ENDPOINTS

 \geq

USE OF THE "SANOWORK APPROACH" WAS **DISCARDED**

GREEN

POSITIVE RESULT

FINAL RISK ASSESSMENT STRATEGY

IN VITRO HAZARD CHARACTERIZATION

Technological Center managing your technologies

In vitro hazard evidence supporting the use of Human hazard threshold values of Benchmark NM

Comparable toxicity profile among ZrO₂ materials and the benchmark material

When compared to the benchmark material (TiO₂ P25), the toxic effects observed for ZrO_2 NP at the same concentrations were in the same range in oxidative stress and inflammation assays.

In some cases even the effects were in a lower range of toxicity \rightarrow <u>conservative approach</u>.

Human hazard threshold values used for ZrO₂ NMs

Material	Worker exposure limit	Agency proposing the threshold	
[TiO ₂ nanomaterial] Evonik Degussa P25 [pigment-grade TiO ₂] Respirable TiO ₂ Bayer AG Bayertitan T rutile-type	0,3 mg/m ³ (REL)	NIOSH (2011)	
Evonik Degussa P25	0,017 mg/m ³ (DNEL)	ENRHES project (2009)	
Evonik Degussa P25	0,6 mg/m ³ OEL (PL)	NEDO project (P06041; 2011)	

Material	Worker exposure limit	Agency proposing the threshold	
Zirconium compounds (bulk)	5 mg/m ³ (TLV-TWA) + 10mg/m ³ (STEL)	ACGIH	
Zirconium compounds (bulk ; zirconium tetrachloride excluded)	5 mg/m ³ (TWA- PEL)	NIOSH	
Zirconium compounds (bulk; inhalable)	1 mg/m ³ (TWA)	DFG (German Research Foundation)	
Metals, metal oxides and other biopersistent granular nanomaterials (1 to 100 nm; density > 6000 kg/m ³)	20.000 particles/cm ³	IFA	
Non fibrous, non CMAR (carcinogenic, mutagenic, asthmagenic and reprotoxic) and insoluble nanomaterials.	20.000 particles/cm ³	BSI	

CONSERVATIVE APPROACH

RISK ASSESSMENT FOR ZrO₂ (Spraying exposure scenario)

EXPOSURE (average worker exposure on a working day)

TWA (7.5 h)	918 (particles/cm ³)
Near Field	0.00273 (mg/m ³)
TWA (7.5 h)	885 (particles/cm ³)
Far Field	0.00263 (mg/m ³)

HAZARD Worker exposure limits

Zirconium (bulk inhalable

Non fibrous, low toxicity insoluble NMs

TiO₂ P25 (Benchmark)

e)	1 mg/m ³ (TWA)
2	20.000 part/cm ³
	0.017 mg/m ³ (DNEL)

Worker exposure scenario with unlikely health risk

CONCLUSIONS

➢ The *in vitro* toxicological characterization allowed to evaluate the efficiency of the Remediation Risk Strategies in terms of hazard.

➤ The similarity of the *in vitro* toxicological profile of the Benchmark materials and the project materials supported the use of already existing human reference values for the whole process of Occupational Risk Assessment.

➢ The risk assessment of the different NMs allowed the categorization of the Sanowork exposure scenarios into "Unlikely health risk" and "Possible health risk" groups.

Acknowledgments

THANKS FOR YOUR ATTENTION

