





#### UNIVERSITA' DEGLI STUDI DI PARMA

## Titanium dioxide nanoparticles enhance macrophage activation by LPS through a TLR4-dependent intracellular pathway

<u>Massimiliano G. Bianchi</u><sup>a</sup>, Manfredi Allegri<sup>b</sup>, Anna L. Costa<sup>c</sup>, Magda Blosi<sup>c</sup>, Davide Gardini<sup>c</sup>, Camilla Del Pivo<sup>c</sup>, Adriele Prina-Mello<sup>d</sup>, Luisana Di Cristo<sup>a</sup>, Ovidio Bussolati<sup>b</sup>, Enrico Bergamaschi<sup>a</sup>

<sup>*a*</sup>Unit of Occupational Medicine, Department of Clinical and Experimental Medicine and <sup>*b*</sup>Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma; <sup>*c*</sup>Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza(RA); <sup>*d*</sup>Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Medicine, Trinity College Dublin, Dublin



Grant NMP4-SL-2012-280716





## **Bacterial Lipopolysaccharide (LPS or endotoxin)**



- Component of the outer membrane of Gram<sup>-</sup> bacteria ۲
- **Elicits strong inflammatory response in competent cells**







## TiO<sub>2</sub> nanoparticles (NPs) at a glance.....

- One of the most common manufactured metal-based NPs worldwide
  - 50,400 tons in 2010; expected to increase to 201,500 in 2015
- Used in several industrial applications
  - Electronics, solar cells, paints, textiles...
  - Food, cosmetics, toothpaste.....
  - Antibacterial and anti-polluting coatings









## TiO<sub>2</sub> nanoparticles and the paradigm of "protein corona"



A role for environmental contaminants in TiO<sub>2</sub> NP effects?





## AIM



## To asses the effects of TiO<sub>2</sub> NP and LPS on murine macrophage Raw 264.7

#### Raw 264.7

#### Immuno-competent cells

#### Express TLR4 receptors



#### **Biological parameters evaluated**

| Cell end points  |                                                                                               |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Cytotoxicity     | Inflammatory markers                                                                          |  |  |  |  |  |  |
| - Cell viability | <ul> <li>NO production</li> <li>Pro-inflammatory genes</li> <li>Cytokine secretion</li> </ul> |  |  |  |  |  |  |

#### Experimental design



**Cell monolayer** 







## Physico-chemical properties of NAMA41<sup>®</sup> and Aeroxide<sup>®</sup> P25

| TiO <sub>2</sub> NP       | XRD ph      | ase distribution        | Density | $CCA (m^2/r)$             | d <sub>BET</sub> (nm) |  |
|---------------------------|-------------|-------------------------|---------|---------------------------|-----------------------|--|
|                           | Anatase (%) | B=Brookite R=Rutile (%) | (g/cm³) | SSA <sub>BET</sub> (m²/g) |                       |  |
| NAMA41®                   | 84          | 16, B                   | 3.98    | 154                       | 10                    |  |
| Aeroxide <sup>®</sup> P25 | 83          | 17, R                   | 4.10    | 60                        | 24                    |  |

Mean size distribution by intensity and ζ potential for 0.125 mg ml–1 of NAMA41<sup>®</sup> and Aeroxide<sup>®</sup> P25 dispersed in deionized water and complete culture medium

|                     | Deionized water <sub>natural pH</sub> |                 |      |                | Deionized water <sub>medium pH</sub> |                 |      | Complete culture medium |     |                 |      |                |
|---------------------|---------------------------------------|-----------------|------|----------------|--------------------------------------|-----------------|------|-------------------------|-----|-----------------|------|----------------|
| TiO <sub>2</sub> NP | рН                                    | Size<br>(d. nm) | PdI  | ζ pot.<br>(mV) | рН                                   | Size<br>(d. nm) | PdI  | ζ pot.<br>(mV)          | рН  | Size<br>(d. nm) | PdI  | ζ pot.<br>(mV) |
| NAMA41®             | 3,9                                   | 45              | 0,48 | 41,2           | 7,3                                  | 9864            | 0,76 | -15,9                   | 7,3 | 1962            | 0,98 | -10,9          |
| DEV. ST             |                                       | 1               | 0,09 | 0,0            |                                      | 2390            | 0,30 | 0,4                     |     | 147             | 0,03 | 0,5            |
| Aeroxide®P25        | 6,5                                   | 286             | 0,30 | 37,4           | 7,7                                  | 3425            | 0,36 | -11,0                   | 7,7 | 532             | 0,53 | -10,8          |
| DEV. ST             |                                       | 4               | 0,04 | 0,9            |                                      | 226             | 0,10 | 0,1                     |     | 16              | 0,11 | 0,4            |





## RESULTS Cytotoxicity



## **Effects of P25® and LPS on cell viability**



\*p < 0.05 vs. Untreated cultures

#### P25<sup>®</sup> do not markedly affect cell viability up to 48h





#### **Inflammatory markers**



## Effects of P25<sup>®</sup> and LPS on NO production



P25<sup>®</sup> synergize the LPS-mediated stimulation of *Nos2* gene/protein expression and of NO production







#### Inflammatory markers

## Effects of P25<sup>®</sup> and LPS on cytokine secretion



#### P25<sup>®</sup> synergize also the secretion of inflammatory cytokines induced by LPS

\*p < 0.05, \*\*\*p < 0.001 vs. untreated cultures; <sup>##</sup>p < 0.01, <sup>###</sup>p < 0.001 vs. cultures treated with LPS 1 ng/ml alone; <sup>\$p</sup> < 0.05, <sup>\$\$\$</sup>p < 0.001 vs. LPS 10 ng/ml alone







Inflammatory markers

## A comparison between the effects mediated by P25® and NAMA41®



The synergistic effect of P25<sup>®</sup> on LPSdependent macrophage activation is shared by NAMA41<sup>®</sup> (another industrial preparation of TiO<sub>2</sub> NPs)



\*\*p < 0.01, \*\*\*p < 0.001 vs. untreated cultures; ##p < 0.01, ###p < 0.001 vs. cultures treated with LPS 1 ng/ml alone.</pre>







### Mechanism characterization

# Role of TLR4 on the P25<sup>®</sup>-mediated synergistic induction of Nos2: effect of polymyxin B



P25<sup>®</sup> enhance macrophage activation by LPS via a TLR4-dependent mechanism







## Mechanism characterization

# Effect of cytoskeletal disorganization on NO production and P25<sup>®</sup> internalization

#### P25<sup>®</sup> 10 $\mu$ g/cm<sup>2</sup> + LPS 1 ng/ml



Cytochalasin blokes the endocytosis of P25®







#### Mechanism characterization

## Effect of cytoskeletal disorganization on NO production and P25<sup>®</sup> internalization



Sanowork



**Endocytosis blockade inhibits the** synergistic effect of P25<sup>®</sup> on LPSdependent NO production

Involvement of an intracellular site



Sanowork



## Mechanism characterization

RESULTS

## **Role of MKKs in the LPS and P25® effects**



\*\*p < 0.01 and \*\*\*p < 0.001 vs. cultures incubated with the same doses of LPS and TiO2 NPs in the absence of inhibitors



## SUMMING UP



- TiO<sub>2</sub> NP synergize LPS inflammogenic activity
  - Enhanced NO production, pro-inflammatory gene expression, cytokine secretion
- The effect requires TLR4 signalling, phagocytosis and the phosphorylation of p38 MAPK

phosphorylation prevent macrophage activation







PRELIMINARY RESULTS P25<sup>®</sup>-LPS binding



## Assessment of LPS corona on P25<sup>®</sup> by SDS-PAGE and Silver Staining



TiO<sub>2</sub> NP bind LPS and are likely responsible for LPS intracellular delivery







## SUMMING UP



- TiO<sub>2</sub> NP synergize LPS inflammogenic activity
  - Enhanced NO production, pro-inflammatory gene expression, cytokine secretion
- The effect requires TLR4 signalling, phagocytosis and the phosphorylation of p38 MAPK

phosphorylation prevent macrophage activation

## • TiO<sub>2</sub> NP are able to deliver high amounts of LPS in to the cell

- LPS corona formation on TiO<sub>2</sub> has been demonstrated

## TiO<sub>2</sub> NP as "TROJAN HORSES"





## CONCLUSIONS

## A working model....





Free LPS "Out-door" activation of TLR4 receptors on plasma membrane



Nanomaterials change the biopersistence and/or bioavailability of PAMPs

Biological effects depend (also) from the bioactive molecules present in the tissue (contaminants, PAMP, etc.)

> Exploitable for modulating inflammatory responses?



Free LPS + TiO<sub>2</sub>@LPS "Out-door"+ "In-door" activation of TLR4 receptors in endosomal compartments





# Thank you all....!!

