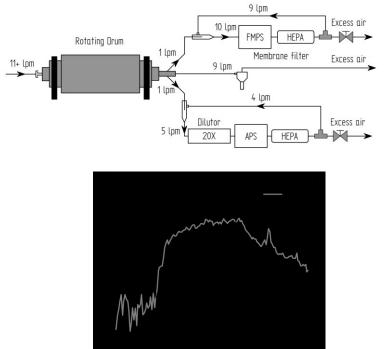
Comparing workers measured dust exposure with predicted exposures using a NF/FF model, NanoSafer II, and the ART exposure assessment tools

Antti J. Koivisto¹, Ismo K. Koponen¹, Alexander C.Ø. Jensen, Kirsten I Kling¹, Marcus Levin^{1,2}, Keld A. Jensen¹

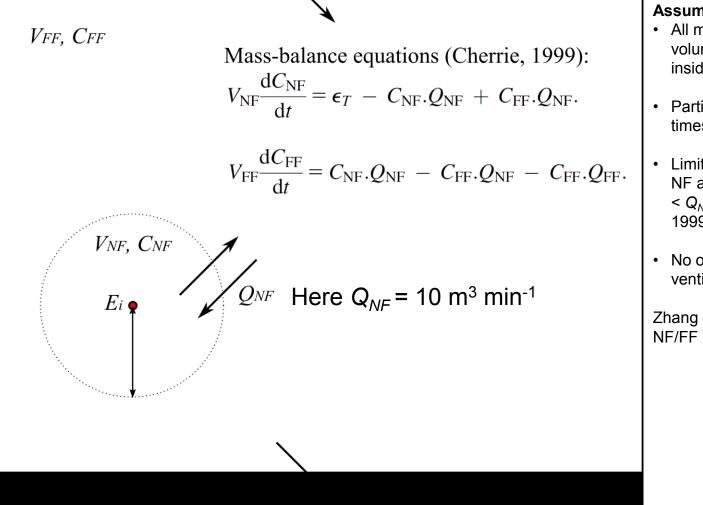
 ¹National Research Centre for the Working Environment, Copenhagen, Denmark
²Department of Micro and Nanotechnology, Technical University of Denmark, Lyngby, Denmark

Sustainable Nanotechnologies

Outline


- Source characterization using dustiness index
- Short introduction to:
 - NF/FF model
 - NanoSafer II
 - The ART
- Performance test: pouring of pigment/filler powders to a mixing tank in a paint factory
- Conclusions
- List of references

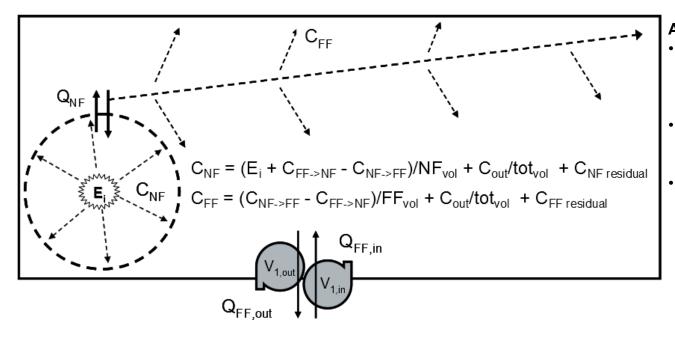
Dustiness index, DI


- Measured using small amount of material (e.g. 6 g in smallrotary drum; Schneider and Jensen, 2008)
- Modifying factors are used to scale *DI* to predict industrial emissions
- The emission from process *i* by handling of powder *j* is:

$$E_{i,j} = DI_j \cdot H_i \cdot \frac{dM_j}{dt} \cdot LC$$

 $E_{i,j}$ = Emission rate [units min⁻¹] Di_j = Dustiness index [units kg⁻¹] H_i = Handling energy factor [-] dM_j/dt = mass flow [kg min⁻¹]LC= Localized controls [-]

The NF/FF model


Assumptions:

- All mass entering the model volume is created at a source inside the NF volume
- Particles are fully mixed at all times in the NF and FF
- Limited air exchange between NF and FF volumes (3 m³ min⁻¹
 Q_{NF} < 30 m³ min⁻¹; Cherrie, 1999)
- No other particle losses than FF ventilation.

Zhang et al., (2009) describes the NF/FF model in detail.

NanoSafer II

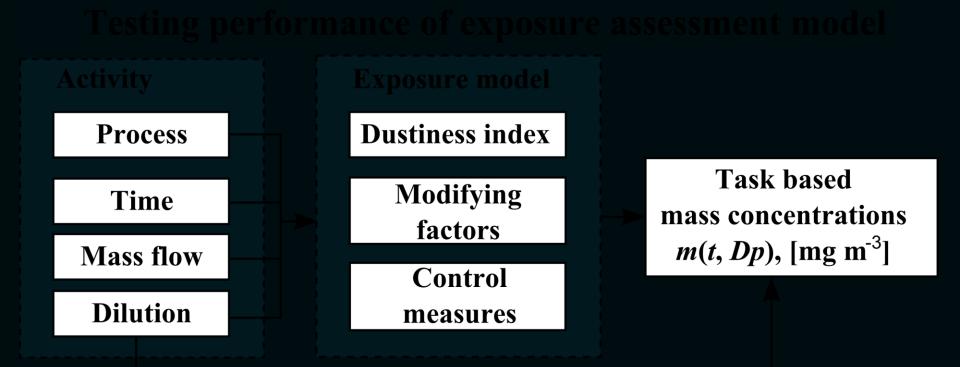
- Same assumptions as in the NF/FF model
- Dispersion based on Schneider et al., (2004)

Assumptions:

- All mass entering the model volume is created at a source inside the NF volume
- Particles are fully mixed at all times in the NF and FF
- No other particle losses than FF ventilation.

The ART (Fransman et al. 2011)

SUN


Table 6. Application of modifying factors in the example

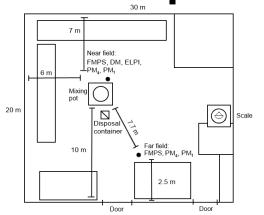
Modifying factor	Relevant parameter	Description	Multiplier
Substance emission potential	Dustiness	Fine dust	0.3
	Moisture contents	Dry product	1.0
	Weight fraction	100% active ingredient	1.0
Activity emission potential: (activity class: transfer of powders, granules, or pelletized material. Activity subclass: falling of powders)	Use rate	Transferring 1–10 kg min ⁻¹	1.0
	Carefulness of handling	Routine transfer	1.0
	Drop height	<0.5 m	1.0
	Level of process containment	Open process	1.0
Localized controls		No localized controls	1.0
Surface contamination		Demonstrable and effective housekeeping practices	0.001
Dispersion (indoors)	Room volume	300 m ³	0.8
	Ventilation rate	10 ACH	

Example of calculation:

 $C_{\rm nf} = \left(E_{\rm nf} \cdot H_{\rm nf} \cdot {\rm LC}_{\rm nf1} \cdot {\rm LC}_{\rm nf2} \right) \cdot D_{\rm nf},$

$$C_{nf} = \left(\begin{pmatrix} 0.3 \times 1.0 \times 1.0 \\ \times (1.0 \times 1.0 \times 1.0 \\ \times 1.0 \times 1.0 \end{pmatrix} \times 0.8 = 0.24, \qquad C_t = \frac{1}{t_{\text{total}}} \sum_{\text{tasks}} \left\{ t_{\text{exposure}} \cdot \left(C_{\text{nf}} + C_{\text{ff}} + Su \right) \right\} + t_{\text{nonexposure}} \cdot 0$$

Measurements

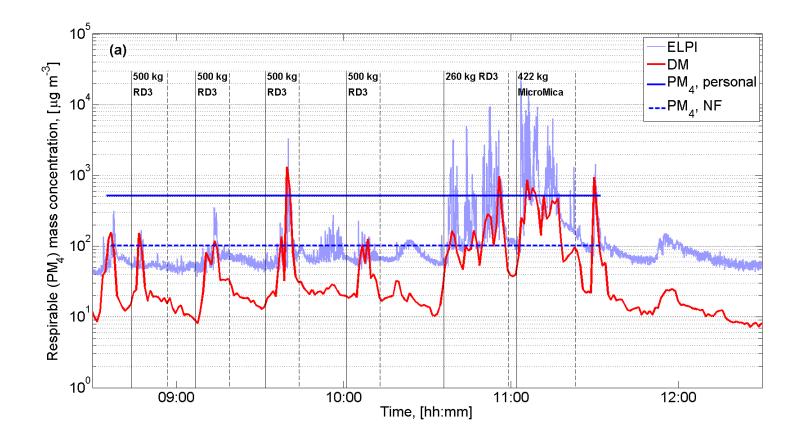

NF/FF number concentrations N(t, Dp), [cm⁻³]

NF/FF gravimetric samples *m*, [mg m⁻³] Mass concentrations *m*(*t*, *Dp*), [mg m⁻³]

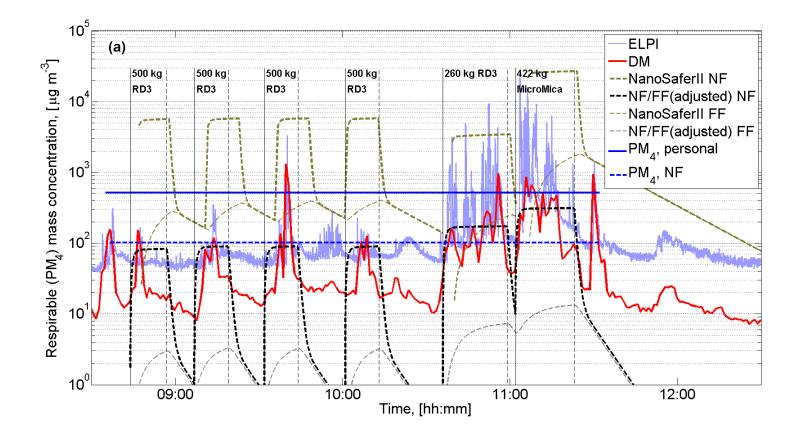
SUN

Mean density and shape of the particles

Pouring of (non-NOAA) powders in a paint factory (Koivisto et al., 2015)



- Pouring from 25 bags and 500 kg sacs
- We measured:
 - Powders dustiness indices
 - Task based NF/FF concentrations
- Task based potential exposures were assessed (the NF/FF, NanoSafer II, and the ART)



Measured PM₄ concentrations

Measured and modeled PM₄ concentrations

SUN

Process specific concentrations

Pouring process	n ^a	PM _{4,DM} , (mg m ⁻³)	NF/FF H_i (when m _{NF/FF} = PM _{4,DM})	NanoSafer II, (mg m ⁻³)	The ART ^b , (mg m ⁻³)
BB RD3	4	0.08	2.35	5.4	0.9 (0.47 - 1.7)
BB TR92	5	0.36	18.60	1.3	0.9 (0.47 - 1.7)
BB Microdol	2	0.77	7.40	4.0	0.9 (0.47 - 1.7)
SB RD3	1(10)	0.17	0.78	3.3	2.7 (1.4 - 5.1)
SB Micro Mica	1(17)	0.31	0.19	2.6	2.7 (1.4 - 5.1)
SB SatinTone	1(16)	0.98	1.09	1.2	2.7 (1.4 - 5.1)
SB Microdol	1(11)	0.25	0.23	1.2	2.7 (1.4 - 5.1)

^aBrackets show the number of poured SBs during the pouring process ^bBrackets show the 75th percentile inter-quartile confidence interval

Note: NanoSafer II gives the exposure potential without emission controls

Conclusions

- More studies are needed to understand:
 - Scaling of DI to industrial scale
 - Effect of aging and powders moisture content to dustiness
 - Energy factors/release potentials in different processes (e.g. sieving,..)
 - Localized controls (currently relies mainly on Fransman et al., 2008)
 - Dispersion of particles (mainly: Q_{NF-FF})
- Emission term in general form:
 - e.g. μg min⁻¹, μm² min⁻¹, particles min⁻¹
- Pressing need for (size-resolved) emission sources' databases (Hussein et al., 2014)

References

- Cherrie JW. (1999) The Effect of Room Size and General Ventilation on the Relationship Between Near and Far-Field Concentrations. *Appl Occup Environ Hyg*; 14: 539-546.
- Fransman W, Van Tongeren M, Cherrie JW, Tischer M, Schneider T, Schinkel J, et al. (2011) Advanced Reach Tool (ART): Development of the Mechanistic Model. *Ann Occup Hyg*; 55: 957–979.
- Fransman W, Schinkel J, Meijster T, Van Hemmen J, Tielemans E, Goede H. (2008) Development and Evaluation of an Exposure Control Efficacy Library (ECEL). *Ann Occup Hyg*; 52: 567-575.
- Koivisto AJ, Jensen ACØ, Levin M, Kling KI, Dal Maso M, Nielsen SH, Jensen KA and Koponen IK (2015) Testing a Near Field/Far Field model performance for prediction of particulate matter emissions in a paint factory. *Environ Sci Process Impacts*; 17: 62.
- Schneider T, Jensen KA. (2008). Combined Single-Drop and Rotating Drum Dustiness Test of Fine to Nanosize Powders Using a Small Drum. *Ann Occup Hyg*; 52: 23–34.
- Schneider T, Jensen KA, Clausen PA, Afshari A, Gunnarsen L, Wåhlin P, Glasius M, Palmgren F, Nielsen OJ, Foghe CL. (2004) Prediction of indoor concentration of 0.5–4 μm particles of outdoor origin in an uninhabited apartment. *Atmos Environ*; 38:6349-6359.
- Zhang Y, Banerjee S, Yang R, Lungu C, Ramachandran G. (2009) Bayesian Modeling of Exposure and Airflow Using Two-Zone Models. *Ann Occup Hyg*; 53: 409–424.
- Hussein T, Wierzbicka A, Löndahl J, Lazaridis M, Hänninen O. (2014) Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose. *Atmos Environ*; http://dx.doi.org/10.1016/j.atmosenv.2014.07.034