Detection of engineered cerium oxide nanoparticles in soils

Frank von der Kammer Antonia Praetorius Willi Fabienke Thilo Hofmann

Department of Environmental Geosciences University of Vienna Austria

- identification as ENPs
- differentiation from natural background
- quantification in natural background
 - \rightarrow contrast is needed!
 - usable difference between ENPs and NNPs
 - composition (low background elements)
 - purity (high element concentration per ENP)
 - elemental ratios (if specific for ENP or NNP)
 - isotopic signatures
 - particle shape
 - structure/composition
 - specific coating of ENPs
 - specific surface chemistry

Von der Kammer (2012)

- identification as ENPs
- differentiation from natural background
- quantification in natural background
 - \rightarrow contrast is needed!
 - usable difference between ENPs and NNPs
 - AuNPs ③ (practically no background)
 - AgNPs 🙂 (low to no background but speciation)
 - CeO₂-NPs ⁽²⁾
 - TiO₂-NPs (have all high particulate background)
 - FeOx-NPs 8
 - organic/carbonaceous NPs 😕

Von der Kammer (2012)

Contrast is lost with more and more complex samples

center for earth sciences

Find the fox!

ENP in tap water

ENP in river water

ENP in soils & sediments

- natural CeO₂ nanoparticles are present in soils & sediments
- Ce concentrations range 10 100 mg/kg
- Increase of bulk concentrations above local background?
- isotopic signatures ?
- elemental ratios ?

Ce isotope ratios (¹⁴²Ce/¹⁴⁰Ce)

Laycock, Rehkaemper (2014)

no usable isotopic fingerprint in products compared to natural soils and rock

- Ce-ENPs have a high purity (other rare earth elements appear only in traces)
- natural background comes with La, Nd, Th and other REE

Ce containing nanoparticle from Clark Fork River bank sediment (Plathe et al.; Env Chem 2010)

elemental ratios (e.g. Ce/La) to identify natural background

Ce in floodplain sediments

La in floodplain sediments

figures from FOREGS baseline mapping project

CeO₂ nanoparticles

La over Ce concentrations according to FOREGS database

FOREGS database	factor Ce/La		SD	mean (mg/kg)	
v.d. Kammer et al. ET&C 2012	floodplains	2.0140	0.1404	53.7	
	sediments	2.0403	0.1658	82.9	
	topsoils	2.0439	0.2464	52.2	

CeO₂ NP analysis in soil matrix – general approach

spiking of natural soil samples

natural background 74 mg/kg (Ce)

SPK0	+ 0	
SPK1	+ 0.004	1 mg/kg Ce-ENPs
SPK2	+ 0.04	mg/kg
SPK3	+ 0.4	mg/kg
SPK4	+ 4	mg/kg
SPK5	+ 40	mg/kg
SPK6	+ 400	mg/kg

colloid/nanoparticle extraction procedure

CeO₂ NP analysis in soil matrix – bulk analysis

A: Bulk analysis of Ce:La ratios in natural and contaminated soils

in colloidal extracts CeO₂ yields are

16% in the unspiked and low concentration spikes

24% in the 40 ppm spike

34% in the 400 ppm spike

CeO₂ NP analysis in soil matrix – FFF-ICPMS

.

center for earth scienc

single particle analysis

selective & specific counting techniques

- elemental composition & morphology (EM)
- single element derived particle size (spICPMS)

- → time resolved ICPMS
 - \rightarrow quadrupole instruments: only single isotope monitored
 - 1) single spike mode (read intervals 1 10 ms)
 - 2) high resolution event monitoring (read intervals ~ 100 μ s)
 - \rightarrow fast scan quadrupole: theoretically 2 isotopes could be monitored
 - → Time of Flight instruments: multiple isotope monitoring event monitoring at ~ 30 μ s resolution

CeO₂ NP analysis in soil matrix – sp-ICPMS

B: Single-element single-particle ICP-MS of colloidal extracts

CeO₂ NP analysis in soil matrix – sp-ICPMS

CeO₂ NP analysis in soil matrix – sp-ICPMS concept

WIEII

Vienna university

Ce & La signals in fast scan & switching spICPMS

Center for earth science

Montaño, Ranville, vd Kammer et al. Environmental Science: Nano, 2014

CeO₂ NP analysis in soil matrix – sp-TOF -ICPMS

possible solution:

ICP-TOF-MS

simultaneous, high speed detection of multiple elements

Borovinskaya et al. 2014

CeO₂ NP analysis in soil matrix – sp-TOF -ICPMS

ETH zürich

La: 57 nm both due to dissolved background

CeO₂ NP analysis in soil matrix – sp-TOF -ICPMS

EHzürich

Ce/La elemental ratios enable identification of manufactured CeO₂ NPs in natural background

NP extractions from soils show recoveries around 20% (often seen...)

Current limits for CeO₂ NPs are 5-10% of the natural background values

single element sp-ICPMS shows potential for better sensitivity (on N and Ce/La mass ratios)

fast scan 2-element sp-ICPMS identification is qualitative only

sp-TOF-ICPMS shows great potential

still need to improve particle size limits need adaption of data treatment (identification and concentration is priority, not size)

Acknowledgement

Center for earth sciences

Stephan Wagner

Elisabeth Neubauer

Thilo Hofmann

Thank you!

EHzürich

Alex Gundlach-Graham Olga Borovinskaya Detlev Günther

funding was provided by

Austrian FFG: DetectNano

ICEENN 2015 - 10th anniversary – 6.-10. September 2015 International Conference on the Environmental Effects of Nanoparticles and Nanomaterials

organized by

University of Vienna Austria

Department of Environmental Geosciences

