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What Does a Tracker Do?

● It finds tracks (well, duh!)
● Particle ID (e/ separation, b-tagging...)

● Measurements of
● Momentum
● Electric Charge
● Impact Parameters
● Position and Trajectory

really measuring
curvature/charge
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Measuring Momentum
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Spatial resolution of 
outermost tracking layer

Momentum resolution 
gains more from tracking 

volume than magnetic field
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Impact Parameters

● Impact parameter measurements for   
b-tagging, flavor physics, lepton ID...

● IP resolution driven by hit resolution

● Get hits close to original collision
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Assume massless decay products...
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Impact parameter independent of boost!
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Detector Technologies

● Bubble chambers:
● Very good resolution
● Way too slow for 

colliders

● Scintillators
● High material budget
● Speed O(10 ns)
● Resolution O(100 m)

● Drift chambers/tubes
● Low material budget
● Speed O(100 ns)
● Resolution > 100 m

● Silicon
● High material budget
● Speed O(10 ns)
● Resolution O(10 m)
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Silicon Detectors
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Source: http://ecee.colorado.edu/~bart/book

● Drift time ~7ns
● Depends on voltage 

and sensor thickness
● Resolution depends 

on strip spacing

● Band gap is 1.12 eV for 
Silicon

● Really 3.6 eV needed for 
ionization (heating)

● MIP deposits 79 keV
● 22k electrons, 3.5 fC

MIP = Minimum Ionizing Particle
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A Problem
● Signal size is 22k electrons
● Charge carrier density in conduction band: 1011/cm3

● Typical sensor dimensions
● 300 m thick
● 6 cm long
● 50 m strip spacing (more relevant than width)

● 108 background charge carriers in neighborhood of 
signal

● Electron-hole pairs recombine easily
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A Problem
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Behold, the Power of Diodes

I=I 0e
qV /kT
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O (10 nA), depends on
temperature, doping
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Depletion Region

n-type semiconductor

Charge fixed to lattice fights 
the external voltage

Reverse bias
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Charge

Field

Voltage

d x

x

x

x

Depletion Voltage

● Voltages and fields from 
Poisson's equation

● Charge density:
● Set by doping concentration (Neff)

● Zero outside depletion region

● p-side very thin, heavily doped
● Need full depletion for full 

efficiency

−d 2V
dx2 =

dE
dx

=
q N eff

 0

Depletion Region

V depl=
q0

2 0

∣N eff∣d
2



Making Tracks at D-Zero 12

Closer to Reality

Readout Chips

Double-sided Double-Metal

Single Sided

1st metal layer:
sensor strips

2nd metal layer:
bring  signals to chips
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Performance

Layer 0 NIM

Herb

Herb

IP resolution degraded
by multiple scattering

Compare  to B/D
c=O(100 m)
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Radiation Damage

● Ionization effects not 
important

● Non-ionizing: atoms 
knocked out of lattice 

● Effectively induces    
p-type doping

● Changes depletion 
voltage

● Charge trapping in 
insulating layer

● Increases in leakage 
current

● Large electric fields 
near surface

● Breakdowns at high 
voltage

Bulk Damage Surface Damage
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Signs of Aging

V depl=
q0

2 0

∣N eff∣d
2  n-type semiconductor

  |Neff| decreasing

type inversion

  p-type semiconductor
  |Neff| increasing

● If applied voltage too 
high (~150 V):
● Noise increases dramatically 

(microdicharge)
● Coupling capacitors 

breakdown (non-recoverable)

Masato
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Summary

● Tracking detectors are an important component 
of collider experiments

● Semiconductor devices satisfy key 
requirements of speed and precision

● Reverse biased diode configurations make 
signal to noise ratio manageable

● Lifetime of silicon detectors limited by radiation 
induced effects
● Microdischarge
● Changes in depletion voltage
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For Further Information

● The Physics of Particle Detectors, Dan Green

● Semiconductor Radiation Detectors, Gerhard Lutz

● Silicon Particle Detectors - Why they are useful and how they work, William 
Trischuk

● Depletion Voltage for the DØ Silicon Microstrip Tracker Using the n-side Noise 
Method, DØ Note 4917 (S. Burdin and S. Lager)

● Radiation Damage in Silicon Particle Detectors, M Moll, PhD Thesis 

http://wwwae.ciemat.es/cdf/ciematencdf/recienllegados/docs/silicon_lecture.pdf
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Backup Slides
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Measuring Depletion Voltage

Sideband region

Signal region

Determine depletion voltage by looking
at signal size vs applied voltage

Plots stolen from Masato

Can also look 
at noise levels
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The DØ Silicon Tracker

2 H-Disks

12 F- Disks

6 Barrels

In total, 731,136 readout channels

Layer 4
Layer 3
Layer 2
Layer 1
Layer 0

r-z view

Staggered sublayers to avoid  gaps

F-disk

Double sided barrel
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The DØ Tracking System

With H-disks

38 cm 53 cm 121 cm

SMT 50 m

CFT 835 m

Strip spacing, 
sometimes larger

Fiber width

SMT NIM

Without H-disks

End View (CFT)
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Lorentz Drifts
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d

E = V/d

v=E=
V
d

Drift velocity

E = V/d

B

h

Mobility (cm2/Vs)

electrons 1400 

holes 450

e

h
 tan=H B

e
Hall Mobility (cm2/Vs)  tan 

electrons 1670 0.33

holes 370 0.74

Lorentz drift can bias position measurement  

Same direction for 
electrons and holes
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