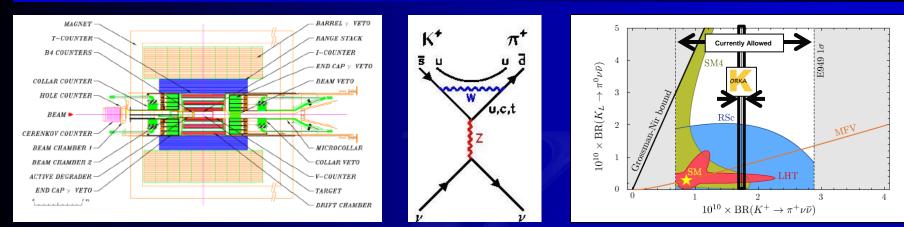


ORKA A Golden Kaon Experiment at Fermilab

Breese Quinn University of Mississippi

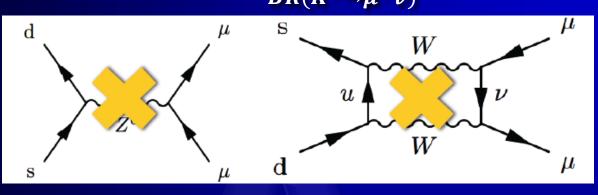


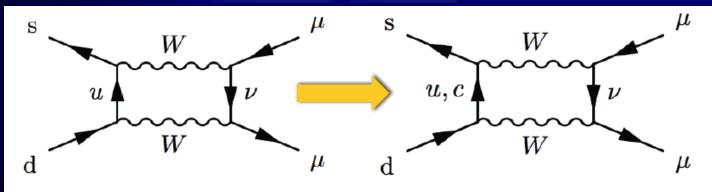
February 13, 2014

• Precision measurement of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ BR at FNAL MI

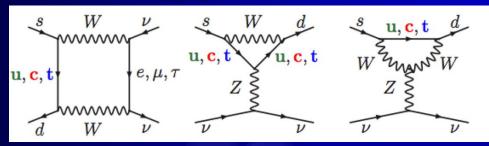
- Observe ~1000 events
- Expected BR uncertainty matches Standard Model uncertainty: 5σ reach for 35% deviation from BR_{SM}.

Sensitivity to new physics at and beyond LHC mass scale


- \rightarrow New Physics at LHC \rightarrow Explore its flavor structure
- \Rightarrow No New Physics at LHC \rightarrow Explore higher mass scales
- Builds on successful previous experiments
 - + BNL E787/E949: 7 candidate events observed



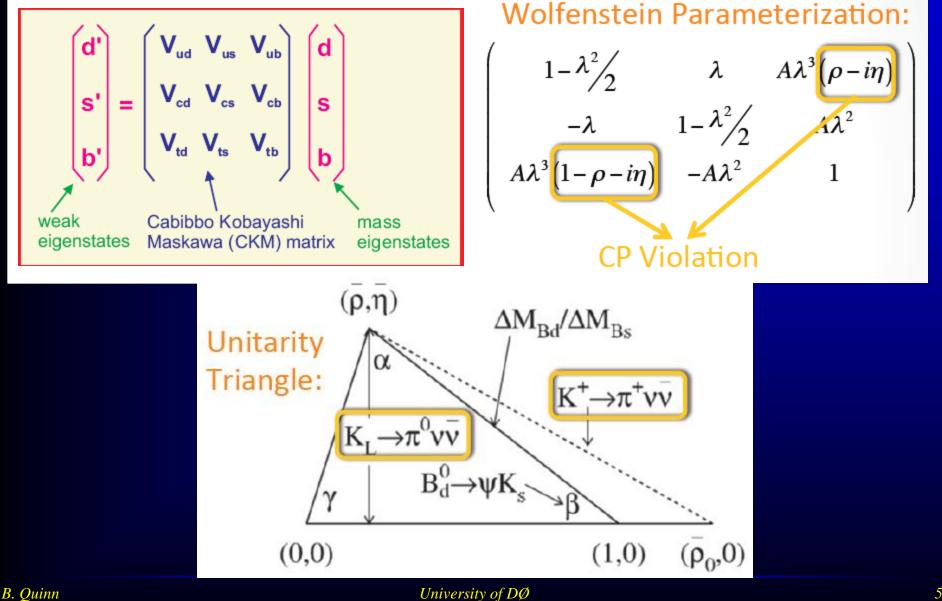
• Highly suppressed in SM: $\frac{BR(K_L \to \mu^+ \mu^-)}{BR(K^+ \to \mu^+ \nu)} \sim 10^{-8}$


- Tree level forbidden by weak isospin
- Higher order loops suppressed by GIM mechanism
 - Coupling to 4th quark, c, with opposite sign to u coupling

• $K \rightarrow \pi \nu \nu$ "Golden decays" are the most precisely predicted FCNC decays involving quarks

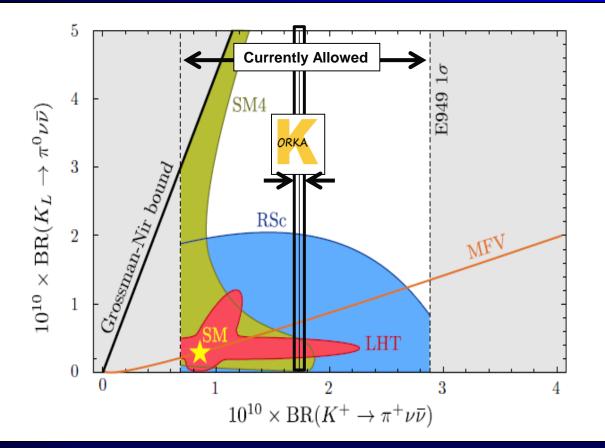
- A single effective operator: $(\overline{s_L}\gamma^{\mu}d_L)(\overline{v_L}\gamma_{\mu}v_L)$
- Dominated by top quark
- Hadronic matrix element from well-measured $K^+ \rightarrow \pi^0 e^+ v_e$
- Dominant uncertainty from CKM matrix elements

$$B_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.8 \pm 0.8) \times 10^{-11} *$$


* Expect prediction to improve to ~5%

B. Quinn University of Mississippi

CKM Matrix and CP Violation


University of Mississippi

February 13, 2014

Sensitivity to New Physics

D. M. Straub, arXiv:1012.3893

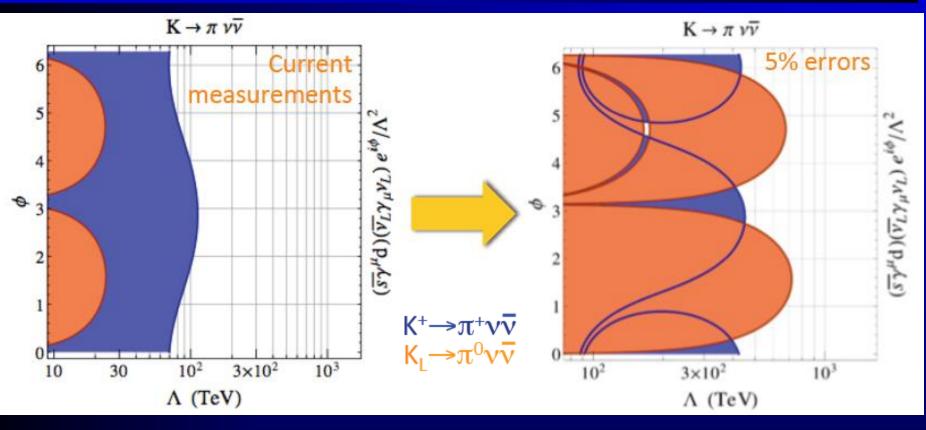
 With prediction and measurement at the 5% level, deviations from the SM as small as 35% can be detected at 5σ

B. Ç	Quinn			
Uni	versity	of Mis.	sissippi	

New Physics Flavor...

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS	Mo	odels
$0 - \overline{D}^0$	***	*	*	*	*	***	?		
ø	* ***	*** ***	*** ***	* *	* *	** ***	*** ***	AC	RH currents and U(1) flavor
KS	***	**	*	***	***	*	?		symmetry
$CP(B \to X_s \gamma)$ $W_{,8}(B \to K^* \mu^+ \mu^-)$	*	*	* *	*** ***	***	* **	? ?	RVV2	SU(3)-flavored MSSM
$ (B \to K^* \mu^+ \mu^-) $ $ \to K^{(*)} \nu \bar{\nu} $ $ _{i} \to \mu^+ \mu^- $	* * ***	* * ***	* * **	* * **	* * **	* *	2 ★ ★	AKM	RH currents & SU(3) family symmetry
$^+ \rightarrow \pi^+ \nu \bar{\nu}$ $_L \rightarrow \pi^0 \nu \bar{\nu}$ $\rightarrow e \gamma$	* * ***	* * ***	* * ***	* * ***	* * ***	*** ***	*** *** ***	δLL	CKM-like currents
	*** ***	*** ***	* ***	*** ***	*** ***	*** ***	*** ***	FBMSSM	Flavor-blind MSSM
	***	*** ***	*** ** **	** * ***	*** *** ***	* *	*** ***	LHT	Little Higgs with T Parity
$(-2)_{\mu}$	***				***	*	4		

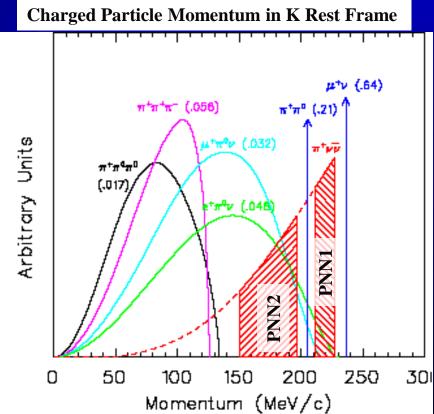
W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories. Nucl. Phys. B830,17 (2010).


Complementary to B and lepton flavor studies

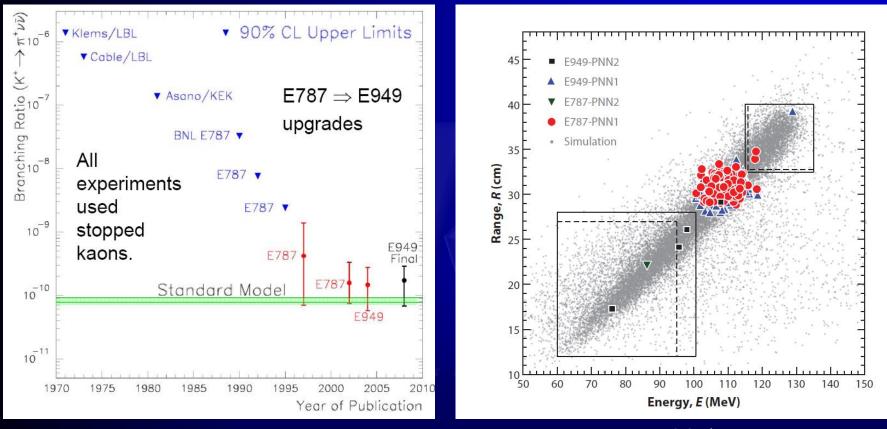
B. Quinn University of Mississippi

High Mass Scales

W. Altmannshofer: https://indico.fnal.gov/contribu:onDisplay.py?contribId=64&sessionId=0&confId=6248

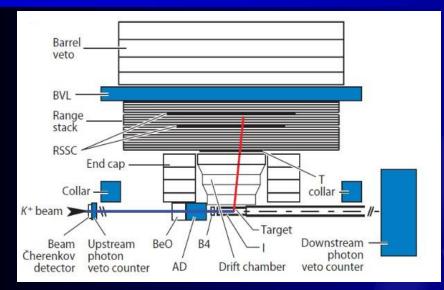

Can probe up to 700 TeV with charged and neutral modes measured to 5%!

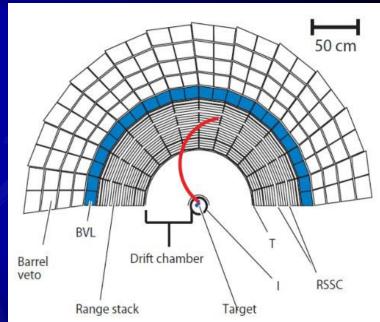
B. Quinn	University of DØ
University of Mississippi	<i>February 13, 2014</i>


- Observed signal is $K^+ \rightarrow \pi^+ \rightarrow \mu^+ \rightarrow e^+$
 - \clubsuit i.e. π^+ + nothing!
- Extremely challenging problem to separate signal from background
 Charged Particle Momentum in K Rest
- Background exceeds signal by > 10¹⁰
- Requires background suppression to S/B ~10
- Requires π/μ/e
 particle ID > 10⁶
- Requires π⁰ photon veto inefficiency < 10⁻⁶
- Requires efficient K⁺ ID

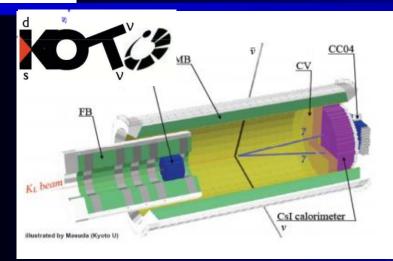
Experimental History

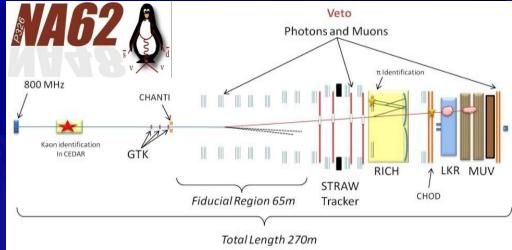
• BNL E787/E949: $BR(K^+ \to \pi^+ \nu \overline{\nu}) = 17.3^{+11.5}_{-10.5} \times 10^{-11}$


7 observed events


• Standard Model: $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu}) = 7.8 \pm 0.8 \times 10^{-11}$

B. Quinn University of Mississippi


- Stop and ID K⁺ in active target
 - Look for delayed decay to suppress prompt background
- \bullet π^+ momentum in drift chamber
- \bullet π^+ energy in target and range stack (where it stops)
 - Position in range stack straw chamber
- $\Rightarrow \pi^+ \rightarrow \mu^+ \rightarrow (delayed) \ e^+ \text{ chain in range stack}$
- 🕈 4π photon veto system


ORKA

ORKA

Current Worldwide Efforts

- J-PARC E14: KOTO
- $\bigstar \ K_L \to \pi^0 \nu \overline{\nu}$
- Pencil beam decay in flight
- Reuse KTeV CsI for calorimeter
- ← Goal: ~3 events (SM), S/B ~ 1
- 2013 commissioning

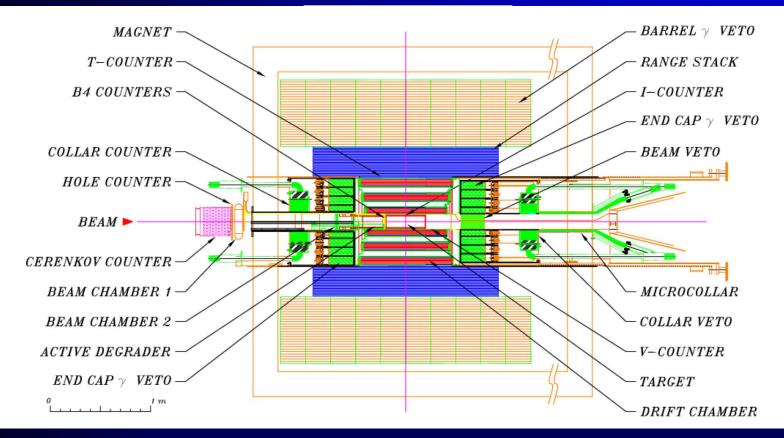
- CERN NA-62
- $K^+ \to \pi^+ \nu \overline{\nu}$
- Decay in flight
- **3**rd generation (NA-31/NA-48)
- ✤ Goal: ~100 events (SM), S/B ~ 10
- Data taking 2015-2018

ORKA at Fermilab

◆ Goal: ~1000 K⁺ → π⁺νν verts over 5 year run (5% unc.)
 ◆ 10¹³ K⁺: studies of other rare processes at 10⁻¹² sensitivity

Stopped K⁺ technique - builds on BNL E787/E949

Complementary to NA-62


 17 institutions in 6 countries (Canada, China, Italy, Mexico, Russia, USA)

- ✤ 6 US universities, 2 US national labs
- Leadership from previous BNL and FNAL US rare K decay experiments

Expect ×100 sensitivity relative to BNL E949

+ ×10 from beam, ×10 from detector

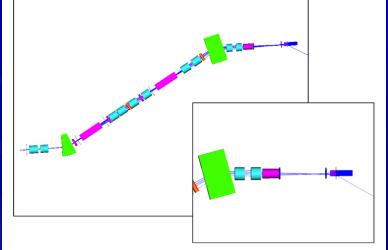
Beam Sensitivity Improvement

Primary Beam from Main Injector

- ✤ 95 GeV/c protons
- ✤ 50-75 kW slow-extraction
- 48×10^{12} protons per spill
- ✤ Duty factor of ~45%
- + # of protons/spill (×0.74)

Secondary Beam Line

✤ 600 MeV/c K⁺ particles


- ← Larger kaon survival fraction (×1.4)
- ✤ Increased fraction of stopped kaons (×2.6)

Increased veto losses due to higher instantaneous rate $(\times 0.87)$ **Overall ×10 improvement**

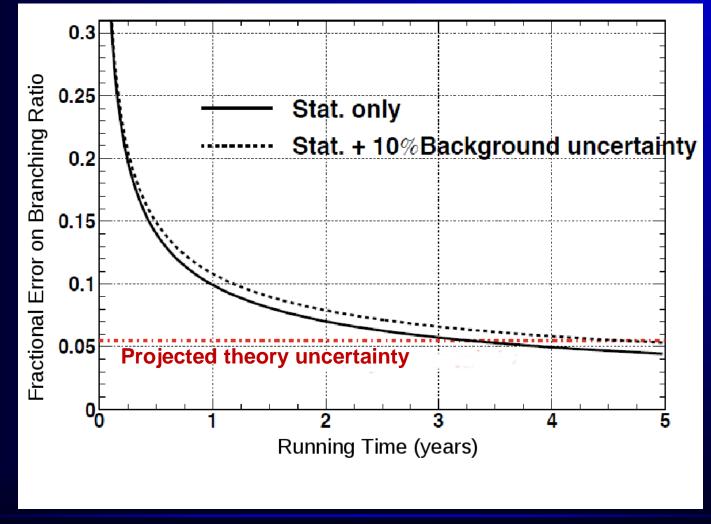
relative to E949

B. Ouinn University of Mississippi

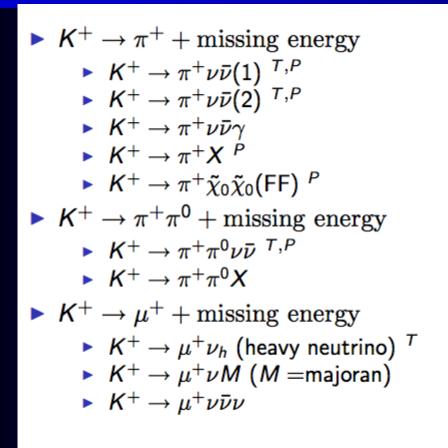
ORKA

orka Detector Acceptance Improvement

Component	Acceptance factor	r
$\pi ightarrow \mu ightarrow e$	2.24 ± 0.07	Better hermiticity,
Deadtimeless DAQ	1.35	granularity, light yield
Larger solid angle	1.38	
1.25-T B field	1.12 ± 0.05	
Range stack segmentation	1.12 ± 0.06	
Photon veto	$1.65^{+0.39}_{-0.18}$	nvestigate different
Improved target	1 00 1 0 00	echnology
Macro-efficiency	1.11 ± 0.07	
Delayed coincidence	1.11 ± 0.05	
Product ($R_{\rm acc}$)	$11.28^{+3.25}_{-2.22}$	


Overall ×11 improvement relative to E949

B. Quinn University of Mississippi


♦ 210 events/year (SM)

Other ORKA Physics Topics

- \blacktriangleright $K^+ \rightarrow \pi^+ \gamma$ TP
- $\blacktriangleright K^+ \to \pi^+ \gamma \gamma P$
- $\blacktriangleright \ \mathbf{K}^+ \to \pi^+ \gamma \gamma \gamma$
- ► $K^+ \rightarrow \pi^+ \text{DP}$; $\text{DP} \rightarrow e^+ e^-$
- ► K⁺ lifetime
- $\blacktriangleright \ \mathcal{B}(\mathcal{K}^+ \to \pi^+ \pi^0) / \mathcal{B}(\mathcal{K}^+ \to \mu^+ \nu)$
- $\blacktriangleright K^+ \to \pi^+ \pi^0 e^+ e^-$
- $K^+ \rightarrow \pi^- \mu^+ \mu^+$ (LFV)
- ▶ $\pi^0 \rightarrow \text{nothing } T, P$
- ▶ $\pi^0 \rightarrow \gamma \text{DP}$; $\text{DP} \rightarrow e^+e^-$

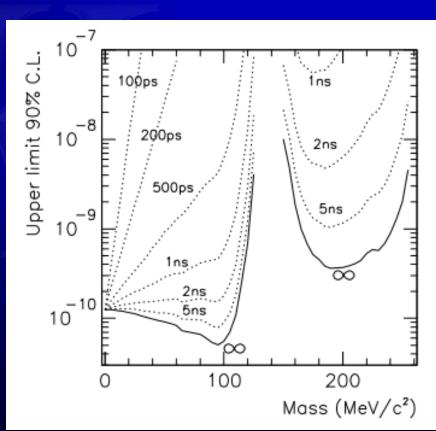
► $\pi^0 \to \gamma X$

^{*T*}E787/E949 Thesis ; ^{*P*}E787/E949 Publication; DP \equiv Dark Photon

E787/E949: 42 publications, 26 theses

KTeV: 50 publications, 32 theses

B. Quinn University of Mississippi

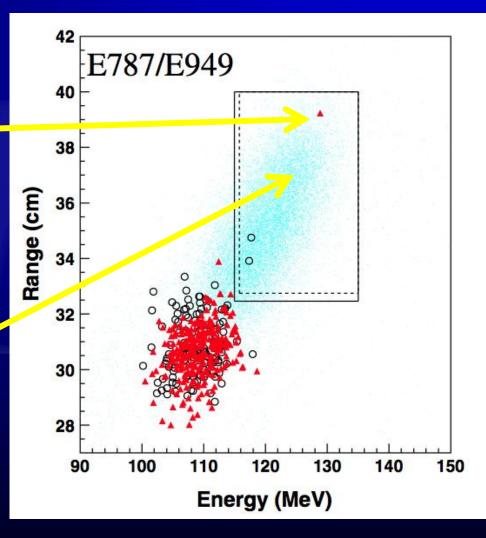

← Many models for X⁰

familon, axion, light scalar pseudo-NG boson, sgoldstino, gauge boson corresponding to new U(1) symmetry, light dark matter...

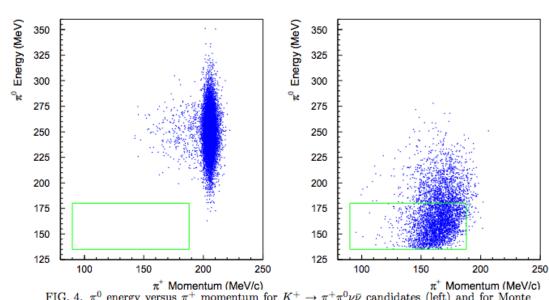
• $K^+ \to \pi^+ \nu \overline{\nu}$ is background

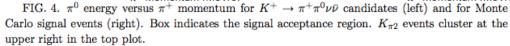
✤ E787/E949

 Curves represent upper limits for specified X⁰ lifetimes



- One event seen in E949
 K⁺ → π⁺νν PNN1 signal region is near kinematic endpoint
- Corresponds to a massless
 X⁰
- Central value of measured $K^+ \rightarrow \pi^+ v \overline{v}$ BR higher than SM expectation
- Event consistent with SM $K^+ \rightarrow \pi^+ v \overline{v},$ yet...


$K^+ \to \pi^+ \pi^0 \nu \overline{\nu}$



- Ke4 BR allows firm SM prediction (1-2×10⁻¹⁴)
- New physics from axial-vector in addition to vector currents
- ← E787: B(K⁺ → $\pi^{+}\pi^{0}v\bar{v}) < 4.3 \times 10^{-5}$

Limited by trigger bandwidth and detector resolution

 Expect ×1000 improvement at ORKA

BNL E787 arXiv:hep-ex/0009055v1

B. Quinn University of Mississippi

ORKA Physics Sensitivity

Process	Current	ORKA
$K^+ \to \pi^+ \nu \bar{\nu}$	7 events	1000 events
$K^+ \to \pi^+ X^0$	$< 0.73 \times 10^{-10}$ @ 90% CL	$< 2 \times 10^{-12}$
$K^+ o \pi^+ \pi^0 \nu \bar{\nu}$	$< 4.3 \times 10^{-5}$	$< 4 \times 10^{-8}$
$K^+ \to \pi^+ \pi^0 X^0$	$< \sim 4 \times 10^{-5}$	$< 4 \times 10^{-8}$
$K^+ \to \pi^+ \gamma$	$<2.3\times10^{-9}$	$< 6.4 \times 10^{-12}$
$K^+ \to \mu^+ \nu_{heavy}$	$< 2 \times 10^{-8} - 1 \times 10^{-7}$	$< 1 \times 10^{-10}$
$K^+ \to \mu^+ \nu_\mu \nu \bar{\nu}$	$< 6 \times 10^{-6}$	$< 6 \times 10^{-7}$
$K^+ \to \pi^+ \gamma \gamma$	293 events	200,000 events
$\Gamma(Ke2)/\Gamma(K\mu2)$	$\pm 0.5\%$	$\pm 0.1\%$
$\pi^0 \to \nu \bar{\nu}$	$<2.7\times10^{-7}$	$<5\times10^{-8}$ to $<4\times10^{-9}$
$\pi^0 \to \gamma X^0$	$< 5 \times 10^{-4}$	$< 2 \times 10^{-5}$

- Optimized for $K^+ \to \pi^+ v \overline{v}$, but capable of precision measurements of many rare processes
- Broad discovery potential
- Rich training ground for next generation of students

B. Quinn University of Mississippi

orka Experimental Facility at Fermilab

Main Injector

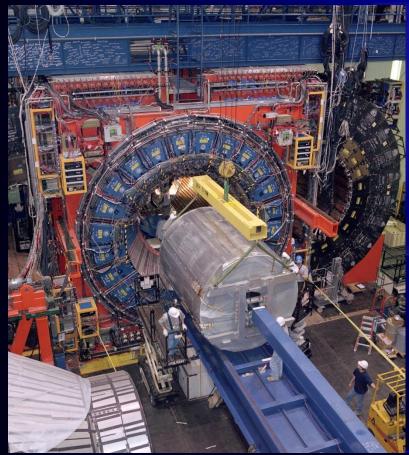
- 75 KW required (of 700 KW)
- ✤ 95 GeV/c
- ✤ 44% duty factor
 - (10 s cycle, 4.4 s spill)

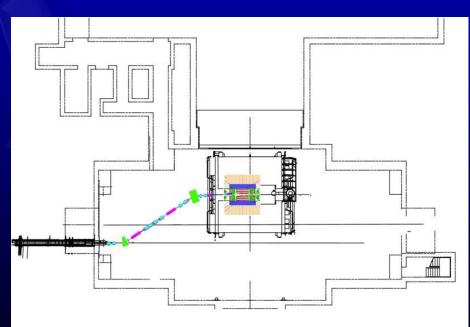
Tevatron tunnel, A0-B0

New beamline with recycled magnets

CDF Collision Hall

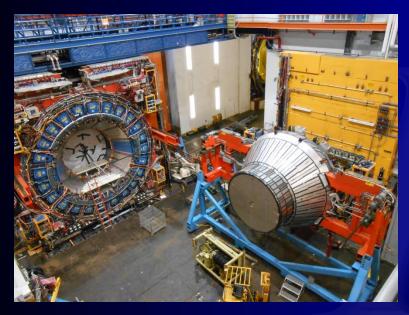
- ORKA fits inside CDF solenoid
- Reuse solenoid, cryogenics, infrastructure
- No civil construction!


B. Quinn University of Mississippi


ORKA in CDF

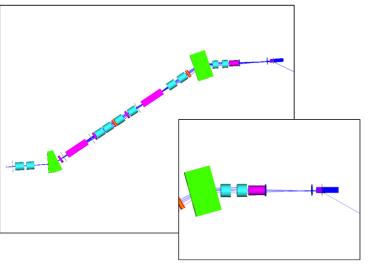
ORKA detector payload replaces the CDF tracker volume

- Primary beam line moved 6 feet south
- Dog-leg kaon beam line
- Spectrometer moved 10 feet north

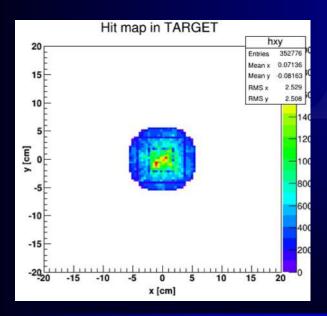

B. Quinn University of Mississippi

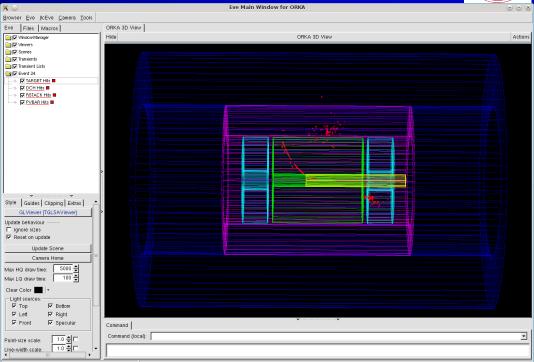
CDF decommissioning and demolition

- Central detector removal
- Removal of cables, electronics, PMTs
- Muon system demolition



Detailed simulation work of beam from production target to stopping target


- G4Beamline, Transport, Turtle
- Redesigned from BNL-style 90-degree bend to dog-leg configuration
- Studies show encouraging K/π ratio
- MARS target studies show acceptable backgrounds



ORKA Physics & Detector Simulations

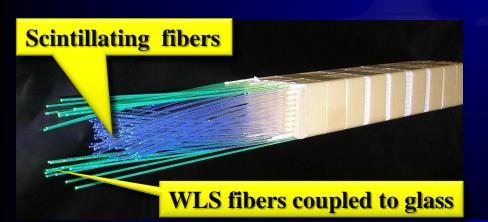
- Full simulation and digitization implemented in ILCRoot framework
- Verify improvements relative to BNL E949

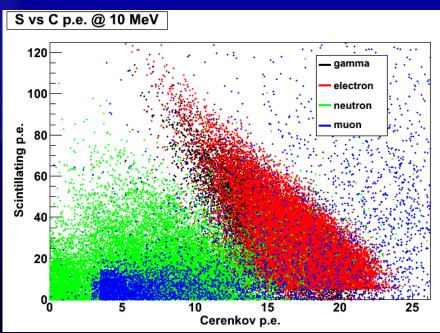
Detector optimization studies

- Length, depth and segmentation
- Technology options
 - Shashlyk vs. Adriano calorimeter
 - Scintillator vs. high-pressure gas stopping target

B. Quinn University of Mississippi

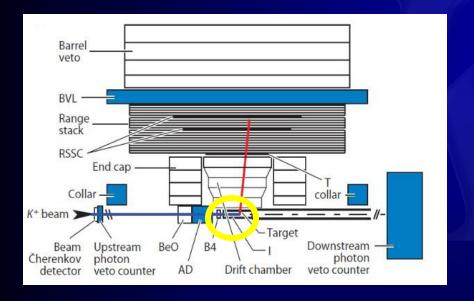
Improvement in sensitivity relative to BNL-E949 depends upon FNAL beam & modernization of experiment design


Detector refinements:


- Efficient photon detectors (ADRIANO/ Shashlik)
- Solid state photo-sensors (SiPMs)
- Range stack tracking (GEM/straw)
- Low-mass drift chamber optimization
- Common front-end electronics for SiPM readout of stopping target, range stack, photon veto, beam monitors
- Fully-streaming, deadtimeless DAQ
- \clubsuit K⁺ beam line and target design

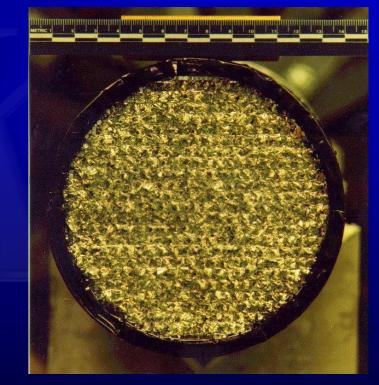
ORKA R&D: Fully Active Calorimeter

- E949 barrel-veto detector was Shashlik detector (lead- scintillator sandwich)
- ADRIANO A Dual-Readout Integrally Active Non-segmented Option
 - Cerenkov light from layers of lead glass coupled to WLS fibers
 - Scintillation light from layers of plastic scintillator
 - Potential to improve photon-veto efficiency
 - Potential for particle identification
 S vs. C light
 - ✤ T-1015 collaboration (FNAL-INFN)


B. Quinn University of Mississippi

R&D: Active Stopping Target

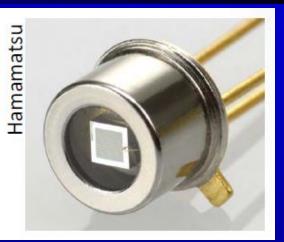
ORKA

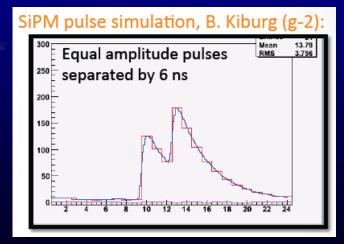

- 1" PMT readout

ORKA target

- + Similar design with shorter fibers (100-200 cm), finer segmentation
- SiPM readout (single/double ended?)

B. Quinn University of Mississippi




R&D: SiPM

- Silicon PhotoMultiplier (SiPM)
- Multi-pixel photo-detector
- Each pixel consists of an avalanche photodiode operating in Geiger mode
- 🕈 Advantages

- High gain, excellent time resolution (~500 ps)
- Small size & insensitivity to magnetic fields allow direct coupling to detector: improved time resolution and light collection efficiency
- Relatively low cost: increased segmentation possible
- Ongoing studies
 - Radiation damage
 - Double pulse resolution

ORKA Cost & Schedule Estimates

- System-by-system review of cost estimate conducted by ORKA collaboration in 2012-2013
 - Input from external experts
 - Much more detailed understanding of expected costs relative to 2011 proposal
- ORKA total project cost: ~\$50M*
- Beam line total cost: ~\$23M*

* Including 50% contingency

- Covered by FNAL Accelerator Improvement Projects (AIPs)
- Similar strategy to muon campus

Schedule

- 2011: FNAL Director Stage 1 approval
- 4 2014: P5 endorsement
- **+** 2020-2025: Operation

B. Quinn University of Mississippi

ORKA & US Program Planning

- ◆ 2008, P5: "[experiments such as ORKA] would be a major component of a future high-sensitivity physics program at Fermilab, and their implementation should be pursued."
- 2011: Fermilab Director Stage 1 approval
- 2011, PAC: The PAC "encouraged the Laboratory and the Collaboration to explore how ORKA could proceed, even in a severely constrained budget environment."
- 2012, PAC: "The PAC again strongly encourages the Laboratory and the Collaboration to move forward with the remaining studies necessary to assess how this important experiment can be done."
- ORKA is a golden opportunity for physics discovery and for international leadership at Fermilab.
- Clear time frame for ORKA Data taking: 2020-2025 between NOvA, Muon g-2, etc. and LBNE.

- High precision measurement of $K^+ \rightarrow \pi^+ v \overline{v}$ at FNAL MI
 - Expect ~1000 events and BR precision of 5%, allowing 5σ discovery of 35% deviations from the Standard Model
 - Unique discovery potential for new physics at and above the LHC mass scale, complementary to B and lepton flavor experiments

Cost-effective, high-quality science

- \$50M total project cost
- Modest accelerator improvement and no civil construction
- Guaranteed physics output with known technique and experienced team
- Great opportunities for collaborators come join us!
 - University-scale detector R&D and construction
 - Dozens of thesis topics for students in an otherwise sparse period
- Enthusiastic encouragement from FNAL, US funding agencies, international partners – next step, P5!

ORKA proposal

B. Quinn	
University	of Mississippi