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Overview

A Radio Frequency
Design
I Resonator Theory
I Deflecting Cavities

A Beam Manipulation

I Past Experience
A KEK
A CEBAF

I Future Plans
A SPX
A LHC Upgrade
A Mu2e (PIP-Il Complex)
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Design and Optimization

RADIO FREQUENCY
RESONATORS

2= Fermilab



A Primer T Radio Frequency Resonators

A Useful to remember: Coty B ——___guts

i O nd 6 ® 9 ®

i Magnetic Fields do no work e 22

. . -

| Stationary charges create e cwiy
Electric Fields peam prm— fs

i Moving charges create Cavity bis ™ & ) g " Electiic Field
Magnetic Fields )

i Charges flow on metallic ¢
surfaces

Diagram courtesy of
LEPP
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Monopole Mode Resonance 1 Test Charges
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Resulting Electric Fields

Excellent! We have
the fields we want.
Note: No currents /

means no magnetic

fields

Cavity Ing fﬂ@

What happens when
we stop holding the
charges in place?
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Releasing the Spring

Important Assumption:

-Material charges move
/ through is an perfect

conductor.
k This means no energy is lost.
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Resonant Behavior

A OFm ATGO)
A WhereT —

A Period is mostly
determined by distance
between electric field
regions

A Remember Maxwell:

-

A 0 — — (in vacuum)

Cavity Equator

Magnetic Field
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Examples of Monopole -Mode (Accelerating) Cavities

2= Fermilab



Cavity Design for Different Accelerator Applications

A Synchrotrons (Ring Machines) A Linacs (Linear Accelerators)

I The beam sees the cavity MANY T Single (or low #) pass machine
times, low gradient is typical i High Gradient is KEY (reduces #

i Field must be very clean and of cavities needed, therefore $$%)
stable i Reliability and ease of fabrication

I Very heavy higher order mode IS very important (many cavities)
damping i Efficiency of operation also

I Very large aperture important

I Acceleration and bunching




Dipole -Mode Cavity

A Dipole-Mode: Two high
electric field regions

A A repetition of the
process we used for the
monopole mode shows:

I Shape of Magnetic field
I T will be smaller (higher
frequency)

A Strong, Transverse

Magnetic Field on Axis

I Degenerate Modes must be
split
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A Deflecting Mode
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Cavity Requirement: Wakefield Damping

A Change in beam
Impedance (read: cross-
section) generates EM
wakefields

A Depending on geometry,
power generated can be
from Watts to kiloWatts

I If symmetry of beam
matches symmetry of
mode, more power Is
deposited

A Power must be
damped/removed before

it disrupts beam
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Temporal evolution of electron
bunch and scattered self-fields
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Cavity Requirement: Wakefield Damping
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NATIONAL ACCELERATOR LABORATORY
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KEK-B and CEBAF

HISTORICAL USAGE
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Bunch #ACrabbingo

A Colliding bunches at an
Interaction point must have
some crossing angle

A ThIS angle geOmetrica”y Electron Bunch Positron Bunch
decreases instantaneous
luminosity

A Most of this lost luminosity
can be recovered by using

deflecting (crabbing) =
cavities to rotate the

bunches
A Rotation is removed after IP

- Cross Angle Crossing

Image Source: ILC Newsline
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Cryostat for KEKB Crab Cavity

From Kenji Hosoyamaat KEK Weight ~5 ton
yi / Input Coupler
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