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Statement of work & interface
control document



Overview of statement of work

“RFQ water system activities for Fermilab”

Sponsor FNAL

Sponsor points of contact | B. Chase, J. Steimel

PI S. Biedron

Institution CSU Dep't. of Electrical & Computer
Engineering

Period of Performance 12 Jan. 2015 - 11 Feb. 2016




Statement of work: specific tasks

1. Assist with formulation of commissioning, test, verification
strategies for RFQ

2. Based on prior work at LBNL, FNAL on cooling system,
simulate system and design local H>0 temperature control
loop.

3. Work with LLRF to interface water temperature and LLRF
systems, with goal to control RFQ frequency.

4. Assist in implementation, verification of control systems.
5. Develop interfaces for operators (auto start-up, e.g.)

6. Help with documentation & reviews
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Statement of work: Deliverables

1. > 2 publications; > 1 archival + > 1 conference proc.

2. Simulation tool for resonant control system.
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Statement of work: Cost breakdown

Effort $74,925
Fringe $10,852
Domestic travel $15,720
Total direct costs | $101,497
Overhead (48.7%) | $49,429
| Total | $150,926
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Interface control document: power, cooling requirements

Table 1: Total Power and Flow Requirements on Cooling System

Parameter Vane Circuit ’ Wall/Pi-rod Circuit | Comments

Heat Load

Nominal Load 29kW 50kW [4]

Maximum load 38kwW 65kW 30% Contingency [4]

Flow Rate

Minimum Flow 44 GPM 88 GPM

Nominal Flow 65 GPM 128 GPM Design Condition [4]

Maximum Flow 87 GPM 172 GPM

Supply Temperature at Interface

Nominal Supply 35°C (TBR) 35°C (TBR) Proposed to allow mixing

Temperature architecture for cooling system
Currently in conflict with [1]

Table 4: Cooling System Requirements on RFQ

Vane Circuit

Wall/Pi-rod Circuit

Comments

Pressure Drop At <60psig <60psig Pressure drop at the interface
Maximum Flow Rate location

MAWP 100psig 100psig

Hydrostatic Test Pressure | 1.5X MAWP 1.5X MAWP B31.3
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System overview



RFQ water layout
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RFQ water layout + locations of temperature sensors
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RFQ water layout + locations of temperature sensors
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RFQ water layout + line delays
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See subsequent slides for determination of mixing point location.
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Model status and current work



Start simple and add complexity

Temperature response to a 10% decrease in water flow rate:

igTemperature of RFQ vanes for lump-of-copper model Temperature of RFQ walls for lump-of-copper model
5 3%

Temperature [C]
Temperature [C]

Vs L
! T tmer " T e T
» Thermal mass of vanes = 10* J/K
» Thermal mass of walls = 1.2 x 10° J/K
» Thermal mass of water in vane circuit = 4.6 x 10° J/K
» Thermal mass of water in wall circuit = 8.4 x 10° J/K
» Coupling between vane & wall ~ 0.7 kW/K
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Mixing point location is “optimized”

Temperature Prior to RFQ.["C]
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System model of trip recovery

Present Mixing Point Location - no control with a trip

2 Present Mixing Point Location — PID with a trip
2
» — asnavin o m
— to-seconatp 218 —— 10-secona
216 216
g 24 214
g
= g VN
g g a2 -
H 5 ou
H £ 208
g H
2 1 206
E g
" 204
202
4 100 £ 700 =0 Too 3 T s T ] 00

Time After Simulation Start s] Time After Simulation Start [s]




Detailed RFQ simulation
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Ongoing work

v

Accurate model of df /dT

Improved estimates of thermal coupling between walls, vanes

v

v

Thermal capacitance of pipes & effect on trip recovery

v

Assessment of heat generated by pump

v

Pulsed operation

v

Heater to compensate changes in return H,O temperature?

18 /25



Simulations with detailed, 3D model




Control Concept: Two MPCs

Basic Conceptual Control Schematic for Water Temperature Loop: Individual MPCs

Tin and Tset refer to the water temperature at the inlet
Tout refers to the water temperature at the outlet

Model Predictive
Control

Find inlet temperatures that
reduce fg,

Can use Af (ATin_waII' ATin_v.:me)

and then detect/make small
adjustments for steady-state error

frequency
|

Model Predictive
Control

Note that the full schematic is more complicated:
1. Each MPC will need to know both temperature set-points in order to account for coupling

2. Would also include supply temperature input under each MPC
3. If Af (ATwall, ATvane) ends up being more complicated than what we have from Andrew’s technical report, then there will likely be

additional inputs for that first block (e.g. related to the present operating point)
4. Will change as we incorporate more from the LLRF
5. Would need to expand to include startup routine
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Control Concept: One MPC

Basic Conceptual Control Schematic for Water Temperature Loop: One MPC

Find inl h Model Predictive
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Would also include supply temperature input under MPC
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Supplemental Slides



Simulink Model
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Effect of damping on water temperature at RFQ input

Added Damping — PID control, 1-second trip
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PID control with damping added

Temperature Prior to RFQ [*C]
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