Shifter training for MICE runs

March 6, 2015

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Getting good data during a shift is easy but not obvious.

Figure : Keeping track of all this is simpler than you think.

- How do you know which parts of the DAQ to care about and which you can safely ignore?
- How will you know if something goes wrong? And what do you do in that event?
- Between the 6 oscilloscopes and the many computers and monitors, how do you know where to look?

The shifter manual is a great resource.

http://mice.iit.edu/mta/shift/mice/ShiftManual.txt

Checklist for shifters (more detail on following slides)

- 1. Get your bearings. (Updates from previous shifter and logbook.)
- 2. Put on hearing protection.
- 3. Log the start of your shift. This is important!
- 4. Run "Acnetize" in a browser (once per hour, see next slide)
- 5. While you're at it, run through the following checklist:
 - Number of sparks (new sparks? mention these in the logbook!)

- RF drive level set correctly?
- Tuning ok?
- Cavity temperature ok?
- Waveform capture on?
- ▶ ...

ACNET Monitor Parameter List – a good place to start

http://mice.iit.edu/cgi-bin/mta/acnetize

Image all and the probability of the pr							
Bedad if status is PENDING P201 Mining 1017: 5: 6: 2003.000 Big 1017: 6: 4: 2003.0000 Big 1017: 6: 4: 2003.00000 Big 1017: 6: 4: 2003.0	🕲 mice it.edu/cgi bin/mta/acnetize		¢	ф 🕴	*	4 8	9
Bedad if status is PENDING P201 Mining 1017: 5: 6: 2003.000 Big 1017: 6: 4: 2003.0000 Big 1017: 6: 4: 2003.00000 Big 1017: 6: 4: 2003.0	CNET Monitor Parameter List						
Process Process <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Name: [1017] * 50 * 105 * 105	eload if status is PENDING						
Hap 17 = 0.53152001123 // LPM. Hot jower [203504001338153205000] Hap 17 = 0.5315200123 // LPM 1002 Hot jower [20150400138163205000] Hap 27 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 27 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 27 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 27 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 28 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 28 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 28 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 28 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 28 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 28 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 28 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 28 = 0.01001237 / LPM [1002 Hot jower [2015040013816320000] Hap 28 = 0.01001237 / LPM [1003 Hot jower [201504001381631020000] Hap 28 = 0.01001237 / LPM [1003 Hot jower [20150400113816320000] Hap 28 = 0.01001237 / LPM [1003 Hot jower [20150400113816320000] Hap 28 = 0.01001237 / LPM [1003 Hot jower [20150400113816310000] Hap 28 = 0.01001237 / LPM [1003 Hot jower [2015040011381633000] Hap 28 = 0.0100120214007 / HPT [1003 Hot jower [2015040011381633000]	F201						
- []ub 17 - 0.00 W [[01 rd []orum [] 2015:0.0713.84.139.000] - []ub 27 - 0.001507000000101 W [[12 101:0.0713.84.139.000] - []ub 27 - 0.00150700000001 W [[12 101:0.0713.84.139.000] - []ub 27 - 0.00150700000001 W [[12 101:0.0713.84.139.000] - []ub 27 - 0.0015070000000000000000000 W [[12 101:0.0713.84.139.000] - []ub 27 - 0.0015070000000000000000 W [[12 101:0.0713.84.139.000] - []ub 27 - 0.001507000000000000000000000 W [[12 101:0.0713.84.139.0000] - []ub 27 - 0.001507000000000000000000000000 W [[12 101:0.0713.84.139.0000] - []ub 27 - 0.00150700000000000000000000000000000000							
Sign27.5 - 0.01105/37.3 XX 102.102.102.103.013.01.304.352.0001 Sign27.6 - 0.01105/37.3 XX 102.102.103.013.01.304.352.0001 Sign27.6 - 0.01102.013.7 XX 102.012.013.013.013.013.013.013.013.013.013.013	- l:ipa17r = 0.0 W [IPA1 ref power] [2015-03-06T13:38:43.592-0600]						
- []up:7 = 0.0010/0700000211 W/ [TA vef power] [2015-0.0713.08.1392.08.001] (] (UPI = 0.0759.0010071001 W/ [TA vef power] [2015-0.0713.08.1392.08.001] (] (UPI = 0.0759.0010071001 W/ [TA vef power] [2015-0.0713.08.1392.08.001] (] (UPI = 0.0759.0010071001 W/ [TA vef power] [2015-0.0713.08.1392.08.001] (] (UPI = 0.0759.001007001 W/ [TA vef power] [2015-0.0713.08.1392.08.001] (] (UPI = 0.0759.00100701 W/ [TA vef power] (UPI = 0.0759.00113.08.1392.08.001] (] (UPI = 0.0759.00100701 W/ [TA vef power] (UPI = 0.0759.00113.08.1392.08.001] (] (UPI = 0.0759.00100701 W/ [TA vef power] [2015-0.0713.08.131.000] (] (UPI = 0.0759.00100701 W/ [TA vef power] [2015-0.0713.08.131.000] (] (UPI = 0.0759.00100701 W/ [TA vef power] [2015-0.0713.08.131.000] (] (UPI = 0.0779.00100701 W/ [TA vef power] [2015-0.0713.08.131.000] (] (UPI = 0.0779.00100701 W/ [TA vef power] [2015-0.0713.08.131.000] (] (UPI = 0.0779.00100701 W/ [TA vef power] [2015-0.0713.08.131.000] (] (UPI = 0.0779.001000000000000000000000000000000							
information Section	— hipa27r = -0.001957305908203125 KW [IPA2 ref power] [2015-03-06T13:38:43.592-0600]						
- Idity = 0.00110073003 XVI Univer of powel [1015-0.0011304.329:0000] When I and I a							
ards w 2.41002.31 Diverse revenues voltage 1 [2015-0.90713.308.13.302.4000] ards w 2.41002.31 Diverse revenues voltage 1 [2015-0.90713.308.13.302.4000] ards w 2.41002.31 Diverse voltage 1 [2015-0.90713.308.13.302.4000] contrast w 3.41002.31 Diverse voltage 1 [2015-0.90713.308.13.302.4000] contrast w 3.41002.31 Diverse voltage 1 [2015-0.90713.308.13.302.4000] contrast w 3.4000.3000.3000.3000.3000.3000.3000.30	— l:dr7r = -0.03814697265625 KW [Driver ref power] [2015-03-06T13:38:43.592-0600]						
Influe Construction Construction	dr7sv = 2.44140625 V [Driver screen voltage] [2015-03-06T13:38:43.592-0600]						
- IndTyp 4: 01159679675 KV Modulater entple vilage [120154.060713.943.559:000] - IndTyp 4: 01159679675 KV Modulater entple vilage [120154.060713.943.559:000] - IndTyp 4: 01159679675 KV Modulater entple vilage [120154.060713.943.599:000] - IndTyp 4: 011596797752019877 How How The Standard Permit [120154.060713.943.599:000] (ICECarbity - control = 014.597777223019985 Thm Left and Standard Permit [120154.060713.943.599:000] - control = 014.597777223019985 Thm Left and Standard Permit [120154.060713.943.199:000] - control = 014.597777223019985 Thm Left and Standard Permit [120154.060713.943.199:000] - control = 1007777233029865 How Thm Left and Standard Permit [120154.060713.943.199:000] - control = 10077977233019985 Thm Left and Permit [120154.060713.943.199:000] - control = 100779777230199867 Thm Left and Permit [120154.060713.943.199:000] - control = 1007820777777777777777777777777777777777							
- L-rDyn - 45330810540713 VOT [7855 filement voling] [2015.0307133.43.5320.400] - L-rDyn - 45330810540713 VOT [7855 filement voling] [2015.0307133.44.5320.400] ICECavity e30 true - 1.9997732336409087 Tort [Voring Volume ID [2015-03 69713.34.533 e30 true - 1.9997732336409087 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.9997732336409087 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.9997732336409087 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.9997732336409087 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.999773236409087 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.99977737145 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.99977737145 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.99977797145 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.99977797145 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.9997797145 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.9997797145 Tort [Voring Volume ID [2015-03 69713.34.531 e30 true - 1.9997797145 Tort [Voring Volume Volume ID [2015-03 69713.34.531 e30 true - 1.9997797145 Tort [Voring Volume Volume ID [2015-03 69713.34.531 e30 true - 1.9997797145 Tort [Voring Volume Volume ID [2015-03 69713.34.531 e30 true - 1.9997797145 Tort [Voring Volume Volume ID [2015-03 69713.34.531 e30 true - 1.9997797145 Tort [Voring Volume	- l:md7ov = 0.115966796875 KV [Modulator output voltage] [2015-03-06T13:38:43.592-0600]						
Jackmen e ob112093013337136 ukap [7835 filament IP current [[2015.03.00713.384.5322.000] IICECavity collyue = 1001209702333040098-7 Torr [Cavity bay vocum [01] 2015-03.00713.384.53 [202000] Mitung = collyue = 70070233040098-7 Torr [Cavity bay vocum [01] 2015-03.00713.844.51 [2020] collyu = 10012097023304098-8 Torr [Cavity bay vocum [01] 2015-03.00713.844.31 [2020] collyu = 10012097023304098-8 Torr [Cavity bay vocum [01] 2015-03.00713.844.31 [2020] collyu = 10012097023104 [2010] collyu = 10012097023104 [2010] collyu = 1001209702311 [2010] collyu = 1001209702314 [2010] collyu = 1001209702314 [2010] collyu = 1001209702314 [2010] collyu = 10012097023048 Torr [Lot coupler vacuum [20] 2015-00713.844.31 [2000] collyu = 10012097023048 Torr [Lot coupler vacuum [20] 2015-00713.844.31 [2000] collyu = 10012097023048 Torr [Lot coupler vacuum [20] 2015-00713.844.31 [2000] collyu = 10012097097048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2000] collyu = collyu = 10012097097048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2000] collyu = collyu = 10012097097048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2000] collyu = collyu = 10012097097048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2000] collyu = collyu = 1001209707048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2000] collyu = collyu = 1001209707048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2000] collyu = collyu = 1001209707048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2000] collyu = collyu = 1001209707048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2000] collyu = collyu = 1001209707048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2010] collyu = collyu = 1001209707048 Torr [Lot coupler vacuum [20] [2015-00713.844.31 [2010] collyu = collyu = 1001209707048 Torr [Lot coupler vacuum [20] 2015-007	C — l:rf7pav = 4.95330810546875 VOLT [7835 filament voltage] [2015-03-06T13:38:43.592-0600]						
C-=201Wes 1.50070232136000827 Total Construction Minung = co2tper / Sam Sink Sink Total Sam Sink Sam Sink C==201Wes Sam Sink Sam Sink Sam Sink Sam Sink C==co2tbe Sam Sink Sam Sink Sam Sink Sam Sink Sam Sink C==co2tbe Sam Sink Sam Sink Sam Sink Sam Sink Sam Sink Sam Sink C==co2tbe Sam Sink Sam Sink<		2,0600 1					
K = a31047 Total Signal S	ICECavity						
Achtung = ccccpr * s = 116, j = 116, d	•						
exctorp = 1.0010770231400238454 Urit Caship top secure Co 11 2013-0407133845311-6000] - exclup = 1.0010770231400238454 Urit Caship to Secure Co 11 2013-0407133845311-6000] - exclup = 7.7001080000902184 Urit Caship top Secure Co 10 21 0310-040713845311-6000] - exclup = 7.70010810000002184 Urit Caship top Secure Co 10 21 0310-040713845311-6000] - exclup = 7.0010127700271645 Urit Ratio coupler userum Co 11 2013-040713845311-6000] - exclup = 7.0010127070071645 Urit Ratio coupler userum Co 11 2013-040713845311-6000] - exclup = 3.03071770071645 Urit Ratio coupler userum Co 11 2013-040713845311-6000] - exclup = 3.03071770071645 Urit Ratio coupler userum Co 11 2013-040713845311-6000] - exclup = 3.03071770071645 Urit Ratio coupler userum Co 11 2013-040713845311-6000] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-0407133845311-6000] - exclup = 2.0001225700709016 Urit Ratio coupler userum Co 11 2013-0407133845311-6000] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-0407133845311-6000] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-0407133845311-6000] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-0407133845311-6000] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-04071338453100] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-0407133845311-6000] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-04071338453114600] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-04071338453114600] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-04071338453114600] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-04071338453114600] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-0407138453114600] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-04071384544464000] - exclup = 4.0001225700709016 Urit Ratio coupler userum Co 11 2013-040713844464000] - exclup = 4.00012257007090		1600 J					
L = e3Clig1 = 4.530/7311090622087 Torp [Cordy box recours PR01 [2015 0-00713.84.3.311.0600] L = e3Clig1 = 4.530/7311090622087 Torp [Cordy box recours PR01 [2015 0-00713.84.3.311.0600] L = e3Clig1 = 4.530/731109072087 Torp [L + Cordpet recours PL] [2015 0-00713.84.3.311.0600] L = e3Clig1 = 4.530/731109072087 Torp [L + Cordpet recours PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 5.000712700707000 For [L + Cordpet recours PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 5.000712700707000 For [L + Cordpet recours PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 5.000712700707000 For [L + Cordpet recours PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 0.500710710708305 7 Torp [Torp [Montpet of the Cord PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 0.50071071070805 7 Torp [Montpet of the Cord PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 0.50071071070805 7 Torp [Montpet of the Cord PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 0.5007107107000 For [Montpet of the Cord PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 0.500710710700 For [Montpet of the Cord PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 0.500710710700 For [Montpet of the Cord PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 0.500710710700 For [Montpet of the Cord PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 0.500710710700 For [Montpet of the Cord PL] [2015 0-00713.84.3.311.0600] Montpet occlept = 0.500710710700 For [Montpet of the Cord PL] [2015 0-00713.84.341.0600] Montpet occlept = 0.50071071070 For [Montpet occlept = 0.500710710700 For [2015 0-00713.84.341.0600] Montpet occlept = 0.50071071070071070 For [Montpet occlept = 0.5007107107007071070 For [2015 0-00713.84.34007000] = 0.5007107107107107071070707070 For [Montpet occlept = 0.5007107070710707071070707070707070707070							
C = e32dp = 7 3001511(17202077 Fer [Vers] Vers] C = 021 [2015 0.0 0713.348.131 [000] C = e32dp = 7 3001511(17202077 Fer [Vers] Vers] Vers] C = 021 [2015 0.0 0713.348.131 [000] Athung = 40207 [2017 2017 HeI = 107 ; Bit couple scalars D [12015.00713.348.131 [000] C = e32dp = 7 5007 [2017 2017 HeI = 107 ; Bit couple scalars D [12015.00713.348.131 [000] C = e32dp = 6 7007 [2017 2014 [2017] [2017 [2017 2017 2017 2017 2017 2017 2017 2017	K — e:c2frg1 = 4.5385781150982285E-7 Torr [Cavity bot vacuum FRG] [2015-03-06T13:38:43.311-						
- = cslip = 1005289720091011 Pror [1ch coupler securit [0] (2015-00071388.311.0000] wcclip = 3.1002122700070887 brow [1ch coupler securit [0] (2015-00071388.311.0000] wcclip = 4.2007122700070887 brow [1ch coupler securit [0] (2015-00071388.311.0000] wcclip = 4.200712700070887 brow [1ch coupler securit [0] (2015-00071388.311.0000] Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [0] (2015-00071388.311.0000] Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [0] (2015-00071388.311.0000) Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [0] (2015-00071388.311.0000) Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [1] (2015-000713888.311.0000] Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [2] (2015-000713888.311.0000] Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [2] (2015-000713888.311.0000] Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [2] (2015-000713888.311.0000] Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [2] (2015-000713888.311.0000] Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [2] (2015-000713888.311.0000] Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [2] (2015-000713888.311.0000] Wcling = csclip = 4.20071270070887 brow [1ch coupler securit [2] (2015-000713888.311.0000] Wcling = csclip = 4.2007127087 brow [1ch coupler securit [2] (2015-000713888.311.0000] Wcling = csclip = 4.200712707127087 brow [1ch coupler securit [2] (2015-000713888.311.0000] Wcling = csclip = 4.200712707127087 brow [1ch coupler securit [2] (2015-0007138887 brow [1ch coupler securit [2] (2015-0007138887 brow [1ch coupler securit [2] (2015-000713887 brow [1ch coupler securit [2] (2015-0007138887 brow [1ch coupler securit [2] (2015-000713887 brow [1ch coupler sec		1					
Achimung (accolume 1 = 1.5.7, a) 1.5.6 = -	— e.c2clig = 1.0094288750391611 Torr [Left coupler vacuum IG] [2015-03-06T13:38:43.311-060	0]					
- e.dznyr e 5/97011677960482-7 Port / Biplit coujber uscum CCG [1201543047133643.311.6000] - e.czlygr e 2.87007110300848 + 071 Center manfold vacuum [CG [1201543647133643.311.6000] - Mannage accelenating + Ba : E.B.; Harris - E.B.; Harris - C.B.;		0600]					
(e:c2clpr = 2.160212257067689E-6 Torr Left coupler vacuum CCG] [2015-03-06T13:38:	:43.311-0600					
erc2smig = 8.986600136522874E-9 Torr I Wall manifold vacuum 16 2015-03-06713:3863.3311-06600 - emcovim = 5724519462534515 PSIG1 Children outbut supply pressure 112015-03-06713.384.40-9600 0	(-e.c2frg2 = 2.8378631781360038E-8 Torr [Getter manifold vacuum IG] [2015-03-06T13:38:43.3						
C — emccwin = 57.25451946258545 PSIG I Chiller output supply pressure 1[2015-03-06T13:38:44.409-0600]		8:43 311.0600 1					
	K — emccwin = 57.25451946258545 PSIG Chiller output supply pressure 11 2015-03-06T13:38:44.4	409-0600 1					

Figure : Lines in yellow are the ones you should pay attention to.

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Checklist: Getting set up

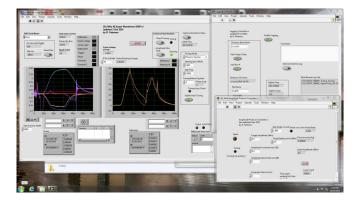


Figure : Shown on monitor labeled MTARFLV2. Look under keyboard for login to unlock screensaver.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Checklist: Number of sparks?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

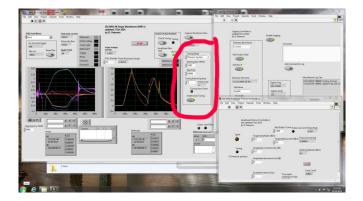
Checklist: RF drive level set correctly?

	Tools Window Help				• • II		9
No.1 1 No.1 1 Mar.ms Read Mar. 19821 1	Teda palar constar Silderi Pudas tala Sattar Synak Tala Japan Tala Sagar Tala Sagar Tala Sagar Tala Sagar Tala Sagar Tala Sagar Tala	201 Mile NJ Gogo Waveform OVP - op dia 2 Oct 2014 by D. Hemann Anno State of the Heman State Mile Annote Parte Turning Annya Mile Annya Parte Turning Annya	Control of Ana Reations Check Turing Turing Come of Anglitude Mini Anglitude Mini Minimat Come of Analysis Proceeding Come of Analysis Proceeding Come of Analysis	Terr Minutions Row	Legging Controller in spiker # Oct 2014 by D. Persons Control for the Series Control for the Series Add Tools 1: Series Add Tools 1: Series	India Logging	week to Log
			A	Der Berker Ganz Ganz Ganz Ganz Ganz Ganz Ganz Ananto ga Ananto ga	Destroy fol name Council 2014 63-201. File Name Parties 2014 Mirk Angelingen Protocol Consolerum File Lide View Report Operate Tools I file Lide View Report Operate Tools	Signa Ing 3022000 Signa Angi 33 Window Help	Musi Roser Log Tad 33335429, MKMI, Selen Fasg, Skoten 3335570, MKMI, Sejder Fasg, Sk
	A 2012	1 x 1.1 x 1.1 x 1.1 1 x 1.1	8 32 45 8 32 45 9 33 45 0 8807 0 8807 0 8807 0 8807	Oney Location DNQ Canadians and c status code to code t	Turing Amplitud 0 (13)	Mar Poste V Limit Post	the torus Lintt Probe Frank 1800 Beng Reng Terre since lets Adj AddRed Lenert Angelinuke (sBire) 35
	2 kens			- 728	0	intenal (an) Same spent waiting for Pu	Loop Court SHORE

Figure : First, is amplitude monitoring turned on?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Checklist: RF drive level set correctly? (cont'd.)


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Checklist: RF drive level set correctly? (cont'd.)

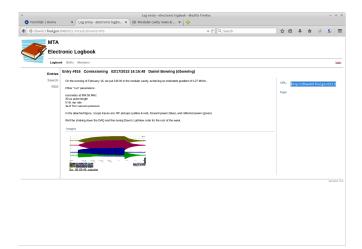
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Checklist: Cavity tuning ok?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Other items on checklist

- Cavity temperature? Check the "Acnetize" site. http://mice.iit.edu/cgi-bin/mta/acnetize
- Waveform capture on? (This is important! We want to capture waveforms.) Check the LabView page to see that it's running.
- Other parameters in the shift manual are easily checked in the same way.


What if there are problems?

- If there are LabView problems during the day, call Dave (x3873).
- If there are RF problems during the day, call Al (x4843) or Yagmur (312-420-5519)

Your shift, in a nutshell

- 1. Orient yourself
- 2. Check parameters as described above
- 3. Relax, but keep one eye on the "Acnetize" script
- 4. At the end of your shift, take some time to write a logbook entry even if nothing happened.
- 5. Give the next shifter a detailed run-down so they know what to look for.

Logbook entries are easy!

Figure : This brings us to Michael's part of the training.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@