
CPU Performance:
ATLAS & CMS

Input from ATLAS & CMS

1

CMS Full Simulation
Computing performance

Vladimir Ivantchenko for the CMS Simulation team

2

C
M

S
Fu

ll
Si

m

Geant4 status in CMS
• Production version of Geant4 for 2015

• Geant4 version10.0p02 built in sequential mode
• Production platform slc6_amd64_gcc491
• Default physics list: QGSP_FTFP_BERT_EML
• ~5 billion events already produced in 2015
• This number will increase for the end of the year

• Current development versions of Geant4 in CMSSW
• Geant410.0p03 + patch of Geant4e for threading is established

• Multi-threaded Geant4 is fully integrated with CMS  
multi-threaded framework

• Our goal is to use it in production 2016
• Platform slc6_amd64_gcc493

• Geant4 10.1p02 is also available in development branches
• Geant4 10.2 planned be our production version in 2017

!3

C
M

S
Fu

ll
Si

m

Where our simulation CPU goes 
(CHEP’15 talk)

!4

Transportation
EM physics
Hadronic physics
SD/User actions
Other

• Technical performance improvements for Run 2 simulation:
1. Upgrade to Geant4 10.0 (~5%)
2. Implementation of Russian Roulette technique (~30%)
3. CMSSW code optimization (~15%)
4. Library repackaging (~10%)

C
M

S
Fu

ll
Si

m

10% performance gain from hidden  
visibility without playing with linker scripts 
(CHEP’15 talk)

Repackage all shared libraries in CMSSW that depend on Geant4 into a single
static library to “hide” Geant4 from the rest of CMSSW
• Use single archive library for Geant4 itself
• This allowed us to more aggressively optimize at link time:  

adding “-flto -Wl,--exclude-libs,ALL” works best

Constraints this imposes:
• Must control dependencies to use Geant4 only within this single library:

• This is “easy” for simulation (<2% of our libraries)
• However, extending this idea to something effecting the full reconstruction is difficult

• Impact on simulation code developers minimized by keeping .so cached in
release. Static library rebuild is the only extra step if developer builds a
package in this static library. !5

C
M

S
Fu

ll
Si

m

Current performance of CMS MT GEN-
SIM (CHEP’15 talk)

!6

Example memory savings: a single
12 threaded MT job requires  
~4 GB RSS instead of 11 GB for 12
single threaded jobs

200 MB/thread

Excellent scaling performance seen in our tests so far.
Geant4 version 10.0p02

Time/event decreases until the # of
threads is equal to the # of cores

 Extrapolation  
from single core

C
M

S
Fu

ll
Si

m

Performance results for Geant4
10.1p02

• For CMS CPU performance is the
same in 10.1 and 10.0

• Memory grows was observed in 10.0p02
about 1.3 M/event

• There is two main contributions to the
memory grows:
• Memory leak in gamma-nuclear and FTF

models
• Objects created with G4Allocator were not

deleted
• Ineffective data structure for nuclear gamma

evaporation models
• Significant memory was used per thread for

nuclear level data
• Both problems were fixed in 10.1p02 and

these fixes were backported to CMSSW
on top of 10.0p03

• After backport of fixes required RSS
memory for 10.0p03+fix become very
similar to 10.1p02 !7

 For 10.0p02 results are shown after
1000 events

ATLAS Full Simulation
Computing performance
Zach Marshall, Elmar Ritsch, Philip Clark, Steve Farrell

Slides - John Apostolakis

8

ATLAS: Overall
• Integrated Sim. Framework (ISF) use almost all

production

• Geant 9.6 full simulation used in 80% of production

• ratio will drop soon (more fast sim)

• Expect move to 10.1 for next campaign (end 2015)

• Appreciate CPU improv. of e- & γ-nuclear x-section.
Would welcome also improv. of hadronic x-sections

9

Stability and production
• Crash rate is a potential time sink in production

• MC15 (G4 9.6) rate was 1.5 10-5 per event

• Rate for G4 10.1 appears similar - around 1.5 * 10-5

• This becomes a 1.5% failure for jobs of 1,000 events - which
is unacceptable. (Push for 1,000 event jobs for efficiency)

• The Multi Level Locator (field propagation) has proven to be a
weakness

• for crashes and possibly cause of very small steps (a time
waste)

10

Hotspots & remedies

• Neutrons take a lot of CPU time. Plan to profile after
getting patches/fixes for previous issues

• Might seek to use available biasing features

• If improvements are provided, happy to benchmark
& profile to identify any hotspots.

11

Memory - use and churn

• Memory consumption is significant (using 600
materials!), but is not enormous concern

• Memory churn was issue in production systems

• Back-port of fix in Navigation Level reduced it

• Geant4 no longer fully dominates churn!

12

Interesting: stack depth in 3 t-tbar events
• average 500-750, maximum 2,000-3,000.

Is this expected ?
13

Evolution

• Seen potential of static builds vs DLLs. Believe this
is very difficult to achieve for ATLAS.

• Looking into other possibilities:

• Wish further study of profile guided optim

• Does it point to suboptimal code?

14

HPC and MT
• Reasonably advanced prototype of MT app for Cori (=

Xeon-Phi based next gen HPC at NERSC.)

• G4 developers responsive & helpful for questions and
functionality needed

• Expect prototype to continue to mature, and more perf.
questions to arise

• Had difficulty due to different design choices between
G4 threading model and Gaudi Hive (task-based).
Andrea Dotti was very helpful in getting this going

15

