
Deletion of physics process,
model and cross section
objects

KOI, Tatsumi

2

Construction of objects of physics process, model and cross
section happens in

 PhysicsList
 new and register
 Process, model and cross section
 new and use
 Others including users codes

These objects must be deleted
 by who and at when

Some of them are shared
 Introduce complexity

Multithreading library
 enhanced potential concerns

3

An example
Geant4/physics_lists/lists/include/LBE.icc

779 else if (particleName == "neutron") {
780 // elastic scattering
781 G4HadronElasticProcess* theElasticProcess = new
G4HadronElasticProcess;
782 theElasticProcess-
>AddDataSet(G4CrossSectionDataSetRegistry::Instance()-
>GetCrossSection
DataSet(G4ChipsNeutronElasticXS::Default_Name()));
783 G4HadronElastic* elastic_neutronChipsModel = new
G4ChipsElasticModel();
784 elastic_neutronChipsModel-
>SetMinEnergy(19.0*CLHEP::MeV);
785 theElasticProcess-
>RegisterMe(elastic_neutronChipsModel);

786 G4NeutronHPElastic * theElasticNeutronHP =
new G4NeutronHPElastic;
787 theElasticNeutronHP->SetMinEnergy(theHPMin);
788 theElasticNeutronHP->SetMaxEnergy(theHPMax);
789 theElasticProcess-
>RegisterMe(theElasticNeutronHP);
790 theElasticProcess->AddDataSet(new
G4NeutronHPElasticData);
791 pmanager-
>AddDiscreteProcess(theElasticProcess);

A question,
who should delete
“theElasticNeutronHP”,
which is instantiated in
LBE::ConstructHad()
and when

4

The object is newed in LBE::ConstructHad()
 registered theElasticProcess

The process is added (registered) to
 ProcessManager of Neutron (G4Neutron::Neutron)

5

G4HadronicInteractionRegistry::Clean()

void G4HadronicInteractionRegistry::Clean()
{
 size_t nModels = allModels.size();
 //std::cout << "G4HadronicInteractionRegistry::Clean() start " <<
nModels
 // << " " << this << std::endl;
 for (size_t i=0; i<nModels; ++i) {
 if(allModels[i]) {
 const char* xxx = (allModels[i]->GetModelName()).c_str();
 G4int len = (allModels[i]->GetModelName()).length();
 len = std::min(len, 9);
 const G4String mname = G4String(xxx, len);
 //std::cout << "G4HadronicInteractionRegistry: delete " << i << " "
 // << allModels[i] << " " << mname
 // << " " << this << std::endl;
 if(mname != "NeutronHP") {
 delete allModels[i];
 }
 // std::cout << "done " << this << std::endl;
 }
 }
 allModels.clear();
 //std::cout <<"G4HadronicInteractionRegistry::Clean() is done
"<<std::endl;
}

Currently, it suppose to
delete in
“G4HadronicInteractionRegi
stry::Clean()”

However, the object
(theElasticNeutronHP) will
not delete in the method,,,,
But this is another story

6

Is this design reasonable?

Lifetime of object
 step
 track
 event
 run
 application

Changing PhysicsList between run

 Mike pointed out problem in his Tuesday
presentation

Boundary sometimes becomes unclear

7

How to control deletion of instantiated object

Establish a rule and observe the rule
 the best way but unrealistic

Use reference of pointer instead copy of pointer

Introduce registry(ies) to manage them
 number of registries
 timing of registration and deletion
 break ideal control based on ownership

Current situation

8

It may be better to separate issues

Deletion of object
 ownership
 lifetime

Deletion of shared object
 mechanism (for example introducing registries)
 ownership and lifetime of the mechanism

Deletion of object (and shared object) in multithreading
library

 technical problem

9

Deletion in multithreading library

Multithreading library enhances complexity
 Destructor may need to work differently between

master and worker
G4Threading::IsWorkerThread() does not always work

 This is not a ownership problem

10

Smart pointers in C++11

unique_ptr<T>
 A unique_ptr explicitly prevents copying of its contained pointer (as would

happen with normal assignment), but the std::move function can be used to transfer
ownership of the contained pointer to another unique_ptr.
shared_ptr<T>

 A shared_ptr maintains reference-counted ownership of its contained
pointer in cooperation with all copies of the shared_ptr. The object referenced by the
contained raw pointer will be destroyed when and only when all copies of the
shared_ptr have been destroyed.
weak_ptr<T>

 A weak_ptr is created as a copy of a shared_ptr. The existence or
destruction of weak_ptr copies of a shared_ptr have no effect on the shared_ptr or
its other copies. After all copies of a shared_ptr have been destroyed, all weak_ptr
copies become empty.
auto_ptr<T> is deprecated in C++11

Consider to use this kind of supports from compiler
Use them smartly, otherwise introduce other problems

