Hadronic Cross Section
Speedup

A. Dotti ; SLAC SD/EPP/Computing

/ Yz ‘ 4] A

~< \ 4 DA

- 1 S

= USCViterbi
43 School of Engineering

Information Sciences Institute

GEANT4 Hadronic Cross
Section Optimizations

Robert Fowler and Paul Ruth
RENCI / UNC Chapel Hill

Pedro Diniz
ISI /USC

NC

RESEARCH . ENGAGEMENT . INNOVATION

Hadronic interactions and cross-sections

1 AR

Consider a G4 Track being propagate, for all hadronic processes we
need to interrogate cross-sections twice: to calculate PIL and, when/
if iInteraction happens we need to select the nucleus (and possibly
isotope) on which interaction happens (sampleZandA method)

Note that to calculate (total) cross-section needed in first step, we
anyway need to sum over all nucleus cross-sections

An optimization has always been present: iff triplet
{particle,energymaterial} is used twice in a row, no need to
recalculate. Note that this happen only in some special conditions
(l.e. neutral particle)

Proposal

1 AR

D M\

ASCR proposed two optimizations:

* observation that triplets {particle,material,energy} tend to
repeat, create a real cache that holds a set of these triplets: an

extension of what has been always there

* build a surrogate model based on the Douglas-Peucker method
(create histogram of the total cross-section), to be used when

total cross-section is needed (for PIL calculation)

Motivation

How can we reduce CPU time!?

Potentially
Better caching to re-use calculations change
Second strategy: provide a “fast surrogate model” physics results.
Thus provide
API to turn on/of
' ' * i in ~ selectively
» Hadronic CrossSections | =" (oo orsoom - o'

— ~10% of total wall clock time*

— Deep call chain with no hot spots
* Reduce call chain length
* Reduce time spent in calculation

ren a USCViterbi

Information Sciences Institute

Cross Section Usage

« Particle/Material/Process Triples
— 50% of cycles in ~10 triples
— 90% of cycles in ~85 triples
— Total ~18k triples

K —
USC Viterbi
rendcl it

Information Sciences Institute

Existing CrossSection Calculation

G4double G4CrossSectionDataStore::GetCrossSection(part,mat)
if (mat == currentMaterial && part->GetDefinition() == matParticle
&& part->GetKineticEnergy() == matKinEnergy)
{ return matCrossSection; }

//Calculate CrossSection the regular way (including xsecelm)

}

G4double G4CrossSectionDataStore::SampleZandA(part,mat){

G4double cross = GetCrossSection(part, mat);

Be as general as possible:

intercept call at highest level
G4CrossSectionDataStore::GetCrossSection(part
Reminder: each process has its own instance

\ | | ~ - . .
| ’ USC Viterb
rendci Viterbi

Information Sciences Institute

Caching CrossSection Results

 QObservation

— Multiple calls to GetCrossSection with exactly the same particle,
material, process, and energy

— Results in same cross section value

— True even though energy is a double! (the physics is causing this)
» Optimization

— Cache recent cross section for particle, material, process triple.
 Measurements

-~ triples tota
— ~3k triples would benefit

rend USCiet,

Modified CrossSection Calculation

G4double G4CrossSectionDataStore::GetCrossSection(part,mat){

entry = process cache map[(part,mat)];

if (entry->energy == part->GetKineticEnergy()){
xsecelm = entry->xsecelm;
crossSection = entry->crossSection;

} else
//Calculate CrossSection the regular way (including xsecelm)
entry->xsecelm = xsecelm;
entry->crossSection = crossSection;

}

return crossSection;

\ 2l
USC Viterbi
rendcl Viterbi

Information Sciences Institute

How to build XS table

Define a “precision target”

Oversimplification: please excuse my imprecision!

Cross section (mb)

| | ||||||l | | ||||||‘ | [T T TTTI | [T T TTTI
200 [% ---------------------------------- e e
100 IZ:IIZZ.'iﬁIIIIZIIZZZZfZIIZZI:IZ:IZIZZﬁZZiIIIiZIZiIZIZZZZ':iIIZi:ZﬁIZIIIZZZZiﬁIIIIZZIZZZIiZﬁfiﬁ:ﬁﬁ::::lﬁ:ﬁiii:iﬁl:::ZIZIZZ::II
S SRS S
............ R D e e R R S e e L e L IR TEECEILIELEEREEEEL AT
50 : ..
2 | 1 L1 1 11 li | | L1111 li | | [I | Ii | | L1 1 111
—1 2
10 1 10 10 10

11

How to build XS table

Interpolate and search maximum distance > precision target

Add a point there

| T T TTTI | [T T TTTI | [T T TTTI | [T T TTTI

200

100

34
Q

Cross section (mb)
)
(=1

2 | IllIIIlI I ll[lIIll | lIIIllII | L1 1 1111

107" 1 10 102 10

O =

How to build XS table

Repeat

200

100

34
Q

Cross section (mb)
S

2 1 lllIIlll I llIlIIlI | lIIlllIl | L1 1 1111

107" 1 10 102 10

13

How to build XS table

Repeat until all added points distance < precision target

| T TTTTT | [T TTTTI | [T TTTTT | T TTTTI
200 e oo
100 — N iZIIIIIIZZIZIEilﬁIZIZII:IZZIZ:IIIIZZIZI'“"”"E """"""""""""""""""""
IR A ':::::::::::i::::::::::::::::f::::::::NOte the bias here, a Second phase:j:ii
S50 CLadjusts Y to balance the residuals
é ...
g ol R A e T D
g
S22 KW
1) :
(72} ' °
92} : 0
8 10 L L 0 S T
i fi:::::::::%ﬂ: o - o
U : ‘{,}.o.q; ..
2 O O
T T T P ¢l fe.. 0 pelastlc --------------------------------------
_°°°°+° LSRR
2 ! Illlllli ! 111||11i ! 1|||11|i L L1 1111l

10 1 10 10 10

Fast Path Usage Particle: neutron

Material: materials_StainlessSteel
Slow path 0n|y; Process: G4Neutron InelasticXS

________lcydes _lcalls | Cycles/Call

Slow Path 6,133,110,476 6,278,517 977

Fast path with lazy computation of slow path:

___ lcydes lcalls __[Cycles/Call__

Slow Path 223,362,860 94,876 2,354
Fast Path 1,059,541,332 5,887,001 179
Total 1,282,904,192 5,981,877 214

Possible ~5x speed up of cross section calculation

rend Sl

r Al

.
. ‘...‘..u.,\\
= 1\MH. = St f<‘
= 0 T p
2 e - 28 KA 2
R i ==

-

Inclusion in Geant4

Prototype code from ASCR provided before the summer

Integration in Geant4 source code Is underway:

* code APIs has been rewritten to remove “C-style” functions
* integration w/ Geant4 structure done: code will be added to

processes/hadronic/cross_sections
— one new class added: G4FastPathCrossSection
— (G4CrossSectionDataStore modified

Details on algorithm

To minimize memory usage, only the total cross-section for a given G4Material is
stored in the fast-path

* the same method G4CrossSectionDataStore:GetCrossSection(const
G4DynamicParticle® , const G4Material®) is called both to calculate total
cross-section for PIL calcualtion and to sample target nucleus (from
sampleZandA)

* in second case we cannot avoid the slow-path unless previous call to the
method was already a slow-path

Logic: call to G4CrossSectionDataStore:GetCrossSection(...) iff functionality is
enabled and call does not come from sampleZandA, fast path is possible:

|, Step 0: super-fast-path (old): iff {particle,material,energy} is exactly the same
as previous call, return immediately, else

2. Step I:check if {particle,material,energy} is in cache, return, else

3

Step 2: use energy for fast-path corresponding {particle,material}, and add
result to cache else

4. Step 3:slow-path

Missing functionalities

Preparation/filling of fast-path surrogate

By default this functionality is turned off, can be activated for a given triplet
{processName particle Type,material}

e Ul commands and C++ API will be created

At initialization, for active triplets the surrogate model is built: sample cross-
section for given energy and build surrogate model

Require modifications to G4HadronicProcess interface

SimplifiedCalorimeter will be used for initial physics validation:
* compare results with feature on and off

FUllCMS will be used for performance evaluation and profiling

Tentative schedule

Goal is to provide feature for 10.2

Time is tight for validation, in case move to 2016

* ATLAS has expressed interested in the feature

(ol B ¥ g
D N

20

