Paired Redundant IOCs with Redundant Hardware

S. A. Baily and Eric Bjorklund
Why Does LANCSE Use Redundant IOCs For Its Timing System?

- Since the 1990s we’ve had redundant hardware for the master timer system.
- If the master timer stops putting out timing gates, all of our RF stands trip off.
 - It’s not difficult to recover a single stand, but recovering all stands takes a lot of time.
 - Historically, dropping all RF power abruptly at 120 Hz caused city-wide power outages.
 - Power dispatch calls when our electricity usage drops quickly (at lower repetition rates).
- Without redundancy, maintenance opportunities on the timing system would be very limited.
Redundant IOC software

• Developed by DESY in collaboration with SLAC
• Maintained by DESY.
How Redundant IOC Software Works

- **Redundancy Monitoring Task**
 - Monitors state health of network and drivers

- **Continuous Control Executive**
 - Synchronizes EPICS databases

- **RMT Driver**
 - Plugs in to RMT.
 - Reports state of health
 - Reports synchronization status
 - Accepts commands to enter master or slave states.
Why a Redundant IOC Pair?

- **Master Timer**
 - Timing Pattern Generator (TPG)
 - VME-64 IOC with solution and zero crossing detector.
 - Generates scheduled timing patterns and timing event link.
 - Includes RF gates and triggerable beam sequences.
 - MRF event generators.
 - Gate Enable, Inhibit, and Countdown Controller (GEICCO)
 - cRIO IOC determines which beam events get sent.
 - Triggers actual beam gates (slave event generators in the TPG) in response to operator switches, and counters.
 - cRIO with TTL Binary I/O.

- A second pair provides redundancy
- A fiber optic switch (MRF-fanout concentrator) selects which system is used.
Hardware Setup

- Two IOC pairs.
- Two single points of failure.
 - RF input (may not matter)
 - Event link (unavoidable)
- Systems monitor each other as part of synchronization.

UNCLASSIFIED
LANSCE Timing System IOC Functions

• Timing Pattern Generator (TPG)
 – Generates scheduled timing patterns.
 – Includes RF gates and triggerable beam sequences.
 • MRF event generators (VME-64).

• Gate Enable, Inhibit, and Countdown Controller (GEICCO)
 – Triggers actual beam gates (slave event generators in the TPG) in response to operator switches, and counters.
 • cRIO with TTL Binary I/O.
Differs From Traditional Redundant IOC

• Not two identical IOCs on the same bus.
• Has redundant hardware.
• IOCs should run continuously.
• IOCs should fail over in pairs.
Broadly Applicable Improvements

- Added support for syncing fields with SPC_DBADDR (waveform records)
 - Modified the Continuous Control Executive (CCEXEC) to support larger fields.
- Made it possible to specify which records should be synced
 - Configurable via info nodes.
 - Modified e2db so that CapFast can be used to configure info nodes.
Why Not Sync All Records?

• IOC stats should be individual.
• Conserve bandwidth
• Redundant hardware read-back channels should come from the actual hardware.
Redundant Hardware Specific Improvements

• Added an option to pause only the channel access server instead of the entire IOC.
• Call post_event on the slave when the database becomes synced with the master (CCEXEC_SLV_INSYNC state) so that passive records can be made to process on the slave.
 – Uses event-driven fanout records.
 – Can control the processing order.
 – Particularly useful for commands.
Small “surprises”

• Database changes should be made live (as well as to the file).
 – If only the file is changed, a rebooted IOC will just resync with its master.
• Needed individual zero crossing delay record values to make timing match as close as possible.
• Failover cannot be made fast enough for our needs.
 – There’s a delay of approximately 1 second in addition to all the specified parameters.
Managing a pair of IOCs

• One of the health monitoring tasks monitors the paired IOC.
• Choose the IOC from which *command-to-fail* commands should be issued. The other monitors the switch position.
• Critical hardware fault failovers are handled by the program in the cRIO.
 – The redundant IOC software then follows.
RMT Drivers

• TPG
 – None, our software tasks
 • Monitors and reports its own health to GEICCO
 • Monitors GEICCO status/health (using asyn)
 • Monitors switch position (using asyn)
 • Issues *command-to-fail* to follow the switch position

• GEICCO
 – Monitors LabVIEW status/health
 • Our program sets the switch position when the IOC becomes master
 – Monitors TPG status/health
Results

- Redundant IOC software can be adapted to coordinate multiple IOCs.
 - Requires some custom software tasks to provide faster failover.
 - Our system can detect a dropped 120 Hz cycle, and respond in time for the next cycle.
- New synchronization control feature (*info nodes*)
- New *pause only channel access* feature
- New *post_event* feature
- New support for SPC_DBR field and large fields