

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Introduction to IOTA and Injectors

Alexander Valishev Fermilab 28 April 2015

IOTA/ASTA Schematic

Existing Infrastructure

- IOTA/ASTA capitalizes on the investments made by OHEP for highly successful ILC/SRF R&D Program.
- Construction of ASTA (formerly NML) began in 2006 as part of the ILC/SRF R&D Program and later American Recovery and Reinvestment Act (ARRA). The facility was motivated by the goal of building, testing and operating a complete ILC RF unit.
- Multi-million (>\$90M) investment resulted in the successful commissioning of 1.3 GHz SRF cryomodule (CM2).
 - Beam through low-energy photo injector
 - Facility nears completion
- The addition of IOTA expands scope to host high-intensity accelerator research.

ASTA Facility

4/28/2015

4

ASTA e⁻ Injector

5

First Electrons Through Photoinjector!

- Sign-offs Wednesday, 25 March
- Electrons beyond the gun Wednesday, 25 March
- Beam after CC2, towards end of line Thursday, 26 March
- Electrons seen at low energy beam absorber (~20 MeV) Friday morning, 27 March

Initial CC2 Phase Scan

OTR Screen after 22.5° bend

Integrable Optics Test Accelerator

Unique features:

- Can operate with either electrons or protons (up to 150 MeV/c momentum)
- Large aperture
- Significant flexibility of the lattice
- Precise control of the optics quality and stability
- Set up for very high intensity operation (with protons)
- Based on conventional technology (magnets, RF)
- Cost-effective solution
 - Balance between low energy (low cost) and discovery potential

IOTA Ring

IOTA Layout

9

Machine Design Principles – 1

- 1 Start with a round axially-symmetric *linear* lattice (FOFO) with the element of periodicity consisting of
 - a. Drift sufficient length

2 Add special nonlinear potential V(x,y,s) in the drift such that

$$\Delta V(x, y, s) \approx \Delta V(x, y) = 0$$

Machine Design Principles – 2

- 3 To maximize the attainable tune shift / spread, design for at least 2 elements of periodicity
- 4 Allow for a second approach to integrability the Electron Lens
- 5 Reserve 5 m drift for Optical Stochastic Cooling chicane
- 6 Decouple transverse and longitudinal degrees of freedom as much as possible
 - Zero dispersion in nonlinear elements
 - Maximize momentum compaction
- 7 Limit the beta-beating to allow large amplitudes of oscillation for studies with pencil beam

Machine Design Principles – 3

- 8 Fit in the experimental hall
- 9 Minimize number of power circuits to reduce cost
- 10 Minimuze the number of magnets
- 11 Instrumentation/correction to achieve high precision
- 12 Good vacuum to ensure sufficient beam circulation time

IOTA Optics Options

- 1 1 Nonlinear Insert
- 2 2 Nonlinear Inserts
- 3 Electron Lens
- 4 2D McMillan
- 5 Optical Stochastic Cooling

IOTA Option 1 – 2NL

IOTA Option 1 – 2NL

IOTA Parameters

Nominal kinetic energy	e ⁻ : 150 MeV, p+: 2.5 MeV
Nominal intensity	e ⁻ : 1×10 ⁹ , p+: 1×10 ¹¹
Circumference	40 m
Bending dipole field	0.7 T
Beam pipe aperture	50 mm dia.
Maximum b-function (x,y)	12, 5 m
Momentum compaction	0.02 ÷ 0.1
Betatron tune (integer)	3 ÷ 5
Natural chromaticity	-5 ÷ -10
Transverse emittance r.m.s.	e ⁻ : 0.04 <i>µ</i> m, p+: 2 <i>µ</i> m
SR damping time	0.6s (5×10 ⁶ turns)
RF V,f,q	e⁻: 1 kV, 30 MHz, 4
Synchrotron tune	e-: 0.002 ÷ 0.005
Bunch length, momentum spread	e ⁻ : 12 cm, 1.4×10 ⁻⁴

4/28/2015

‡ Fermilab

IOTA Layout

IOTA Elements – 1

- 8 sector bending magnets (4 30-degree, 4 60-degree)
- 39 quadrupole magnets in 26 circuits
- 25 H dipole correctors, 21 V
- 20 skew-quadrupole correctors
- 8 sextupole magnets
- 20 button-type BPMs
- 8 Synchrotron Light ports (CCD cameras, PMTs)
- Current monitor

IOTA Elements – 2

- Dual-frequency RF cavity (30 MHz, 2 MHz)
- Single-turn injection
 - Lambertson magnet
 - H and V stripline kicker (also for painting the aperture)

Ring Elements in Hand

Dipole magnets (ordered)

32 quads from JINR (Dubna) being measured

Vacuum chambers for dipoles (received)

Magnet support stands from MIT (received) Also: BPM bodies and electronics Vacuum system Dipole power supply Quad supplies Corrector power supplies

20 A. Valishev I Introduction to IOTA

IOTA Electron Lens

- Capitalize on the Tevatron experience and recent LARP work
- Re-use Tevatron EL components

Nonlinear Magnet

 Joint effort with RadiaBeam Technologies (Phase I and II SBIR)

FNAL Concept: 2-m long nonlinear magnet

RadiaBeam short prototype. The full 2-m magnet will be designed, fabricated and delivered to IOTA in Phase II

IOTA Staging – Phase I

<u>Phase I</u> will concentrate on the academic aspect of single-particle motion stability using ebeams

- Achieve large nonlinear tune shift/spread without degradation of dynamic aperture by "painting" the accelerator aperture with a "pencil" beam
- Suppress strong lattice resonances = cross the integer resonance by part of the beam without intensity loss
- Investigate stability of nonlinear systems to perturbations, develop practical designs of nonlinear magnets
- The measure of success will be the achievement of high nonlinear tune shift = 0.25

IOTA Staging – Phase I

- The magnet quality, optics stability, instrumentation system and optics measurement techniques must be of highest standards in order to meet the requirements for integrable optics
 - 1% or better measurement and control of β -function, and 0.001 or better control of betatron phase
- This is why Phase I needs pencil e⁻ beams as such optics parameters are not immediately reachable in a small ring operating with protons

IOTA Staging – Phase II

After the IOTA commissioning with e-, we will move the existing 2.5 MeV proton/H- RFQ into the ASTA hall to inject protons into the IOTA ring.

- $\Delta Q_{SC} = 0.5$ for one-turn injection, multi-turn injection possible
- Allows tests of Integrable Optics with protons and realisti space charge beam dynamics studies

Beam energy	2.5 MeV
Beam momentum	70 MeV/c
Relativistic beta	0.073
RF structure	325 MHz
Average beam current	<8 mA
Transverse emit.	0.4 mm-mrad
Momentum spread	3.7×10 ⁻³
Pulse rate	0.2-1 Hz
Max. protons per turn	8.8×10 ¹⁰

Plan of Activities and Status

Phase 1: FY15-17

- 1. Construction of main elements of the ASTA/IOTA facility:
 - a) electron injector based on existing ASTA electron linac
 - Low energy injector operational. HE beamline construction in FY15. Connect CM2 and send beam down HE beamline in FY16
 - b) IOTA ring
 - Most components procured. Begin assembly in FY16
 - c) proton injector based on existing HINS proton source
 - Resurrecting the ion source in FY15, RFQ in FY16
 - d) special equipment for AARD experiments.
- 2. Commissioning of the IOTA ring with electron beam FY17

🔁 Fermilab

4/28/2015

3. Study of single-particle dynamics in integrable optics with electron beams.

Plan of Activities – Outlook

Phase 2: FY18-20

- 1. Commission IOTA operation with proton beams.
- 2. Carry out space-charge compensation experiments with nonlinear optics and electron lenses.

Phase 3: FY21 and beyond

- 1. Study the application of space-charge compensation techiques to next generation high intensity machines.
- 2. Expand the program beyond these high priority goals to allow Fermilab scientists and a broader accelerator HEP community to utilize unique proton and electron beam capabilities of the ASTA/IOTA facility

Acknowledgments

- A.Burov, K.Carlson, A.Didenko, N.Eddy, V.Kashikhin, V.Lebedev, J.Leibfritz, M.McGee, S.Nagaitsev, L.Nobrega, A.Romanov, G.Romanov, A.Valishev, S.Wesseln, D.Wolff (FNAL)
- D.Shatilov (BINP)
- G. Kafka (IIT)
- S. Danilov (ORNL),
- S. Antipov (U of Chicago)
- J. Cary (Tech-X)
- D. Bruhwiler, S. Webb (RadiaSoft)
- F.O'Shea, A.Murokh (RadiaBeam)
- R.Kishek, K.Ruisard (UMD)
- JINR, Dubna

