Optical Stochastic Cooling Experiment at IOTA

Valeri Lebedev

IOTA FOCUS WORKSHOP April 28-29, 2015 Fermilab

<u>Contents</u>

- Introduction to Optical Stochastic Cooling
- Basics of Optical Stochastic Cooling
- Optical Stochastic Cooling at IOTA ring
- Conclusions

Principles of Optical Stochastic Cooling

- OSC suggested by Zolotorev, Zholents and Mikhailichenko (1994)
- OSC obeys the same principles as the microwave stochastic cooling, but exploits the superior bandwidth of optical amplifiers ~ 10¹⁴ Hz

At optimum the cooling rates of stochastic cooling are

Dimensionless damping rate: $\lambda f_0 \approx -$

$$\frac{W}{N} \iff \lambda \approx \frac{1}{N_{sample}}$$

- Potential gain in damping rates: 10³÷10⁴
- Pickup and kicker must operate at the optical frequencies (same band as an opt. amplifier)
 - Undulators suggested for pickups & kickers
- Slow particles do not radiate at optical frequencies
 - OSC can operate only with ultra-relativistic particles

Principles of Optical Stochastic Cooling (continue)

Radiation wave length

$$\lambda = \frac{\lambda_{wgl}}{2\gamma^2} \begin{cases} \left(1 + \gamma^2 \left(\theta_e^2 + \theta^2\right)\right) & -helical undulator \\ \left(1 + \gamma^2 \left(\frac{1}{2}\theta_e^2 + \theta^2\right)\right) - flat undulator \end{cases}$$

Undulator parameter: $K = \gamma \theta_e \Rightarrow \lambda |_{\theta=0} = \lambda_{wgl} \left(1 + K^2 / 2 \right) / \left(2\gamma^2 \right) - flat undulator$

- Correction signal is proportional to longitudinal position change on the travel from pickup to kicker
- Only longitudinal kicks are effective for ultra-relativistic beam
 - *s*-*x* coupling for long. cooling
 - x-y coupling for vertical cooling
- Introduce partial slip factor: describes a long. particle displacement on the way from pickup to kicker with $\Delta p/p \neq 0$ & no betatron motion

$$\tilde{M}_{56} = M_{51}D_1 + M_{52}D_1' + M_{56} \qquad \iff \Delta s = \tilde{M}_{56} (\Delta p / p)$$

Cooling rates:

$$\lambda_{x} = \frac{k\xi_{0}}{2} \left(M_{56} - \tilde{M}_{56} \right)$$
$$\lambda_{s} = \frac{k\xi_{0}}{2} \tilde{M}_{56}$$

$$\lambda_x + \lambda_s = \frac{k\xi_0}{2} M_{56}^{\ pk}$$

Test of OSC in Fermilab

- First attempt to test the OSC in BATES, ~2007
 - Existing electron synchrotron
 - Did not get sufficient support
- Presently Fermilab is constructing a dual purpose small electron ring called IOTA to test:

Linearized longitudinal kick in pickup wiggler

$$\frac{\delta p}{p} = k\xi_0 \,\Delta s = k\xi_0 \left(M_{51}x_1 + M_{52}\theta_{x_1} + M_{56}\frac{\Delta p}{p} \right)$$

Cooling rates (per turn)

$$\lambda_x = \frac{k\xi_0}{2} \left(M_{56} - \tilde{M}_{56} \right)$$
$$\lambda_s = \frac{k\xi_0}{2} \tilde{M}_{56}$$

$$\lambda_x + \lambda_s = \frac{k\xi_0}{2} M_{56}^{\ pk}$$

Basics of OSC: Cooling Range

■ Cooling force depends on △s nonlinearly

$$\frac{\delta p}{p} = k\xi_0 \Delta s \implies \frac{\delta p}{p} = \xi_0 \sin(k\delta s)$$

where $k\delta s = a_x \sin(\psi_x) + a_p \sin(\psi_p)$

$$\frac{1}{\xi_0} \cdot \frac{\delta p}{p} = 0.5 \\
0 \\
-0.5 \\
-1 \\
0 \\
1.571 \\
k \cdot \delta s = 3.142 \\
4.712$$

and $a_x \& a_p$ are the amplitudes of longitudinal displacements in cooling chicane due to \perp and L motions measured in units of laser phase

$$a_{x} = k \sqrt{\varepsilon \left(\beta_{p} M_{51}^{2} - 2\alpha_{p} M_{51} M_{52} + \gamma_{p} M_{52}^{2}\right)}, \text{ where } \varepsilon = \beta_{p} \theta^{2} - 2\alpha_{p} x \theta + \gamma_{p} x^{2}$$
$$a_{p} = k \tilde{M}_{56} \left(\Delta p / p\right)$$

Averaging yields the form-factors for damping rates

$$\lambda_{s,x}(a_x, a_p) = F_{s,x}(a_x, a_p)\lambda_{s,x}$$
$$F_x(a_x, a_p) = \frac{2}{a_x}J_0(a_p)J_1(a_x)$$
$$F_p(a_x, a_p) = \frac{2}{a_p}J_0(a_x)J_1(a_p)$$

Damping requires both lengthening -1^{-1}_{0} amplitudes (a_x and a_p) to be smaller than $\mu_0 \approx 2.405$

Transfer Matrix for OSC Chicane

Chicane displaces the beam closer to its center

$$\mathbf{M}_{ta} = \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & \frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & 1 & \mathbf{0} & \varphi \\ -\varphi & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} & 1 & -\frac{\mathbf{L}_{.d} \cdot \varphi^{2}}{6} \\ -\varphi & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} & 1 & -\frac{\mathbf{L}_{.d} \cdot \varphi^{2}}{6} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & 1 & \mathbf{0} & -\varphi \\ \varphi & \frac{\mathbf{L}_{.d} \cdot \varphi}{2} & 1 & -\frac{\mathbf{L}_{.d} \cdot \varphi^{2}}{6} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & 1 & \mathbf{0} & -\varphi \\ \varphi & \frac{\mathbf{L}_{.d} \cdot \varphi}{2} & 1 & -\frac{\mathbf{L}_{.d} \cdot \varphi^{2}}{6} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & 1 & \mathbf{0} & -\varphi \\ \varphi & \frac{\mathbf{L}_{.d} \cdot \varphi}{2} & 1 & -\frac{\mathbf{L}_{.d} \cdot \varphi^{2}}{6} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & 1 & \mathbf{0} & -\varphi \\ \varphi & \frac{\mathbf{L}_{.d} \cdot \varphi}{2} & 1 & -\frac{\mathbf{L}_{.d} \cdot \varphi^{2}}{6} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{1} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} & \mathbf{1} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & 0 & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & -\frac{\mathbf{L}_{.d} \cdot \varphi}{2} \\ 0 & \mathbf{0} &$$

Leaving only major terms we obtain

OSC Chicane and Limitations on IOTA Optics

Dispersion in the chicane center

- In the first approximation the orbit offset in the chicane (h), the path lengthening (Δs), the defocusing strength of Qd (Φ) and dispersion in the chicane center (D^{*}) determine the entire cooling dynamics
- Δs is set by delay in the amplifier => M_{56} (Δs = 3 mm is chosen, includes delay in lenses)
- Choose $(dD/ds)^* = 0 \Rightarrow D|_{s=\pm L_t} \approx D^*$
- $\Phi D^* h$ determines the ratio of decrements
 - Choose: $\lambda_x = 2\lambda_s \Rightarrow \Phi D^* h \approx 4\Delta s / 3$

- $M_{56} \approx 2\Delta s$, $\tilde{M}_{56} \approx 2\Delta s - \Phi D^* h$, $\frac{\lambda_x}{\lambda_s} = \frac{\tilde{M}_{56}}{M_{56} - \tilde{M}_{56}} \approx \frac{\Phi D^* h}{2\Delta s - \Phi D^* h} ,$ $k\sigma_p\left(\frac{\Delta p}{p}\right) \quad \tilde{M}_{56} < \mu_0$ $n_{\sigma p}\sigma_p = \left(\frac{\Delta p}{p}\right)_{\max}$ $n_{\sigma p} \approx \frac{\mu_0}{\left(2\Delta s - \Phi D^* h\right) k \sigma_n},$
- For the wave length of λ=2.2 μm and momentum spread of σ_p=1.2·10⁻⁴
 ⇒ Cooling acceptance for longitudinal degree of freedom (n_{σp}=3.6)
 Thus D* determines the ratio of cooling rates and cooling acceptance in momentum

This is the first limitation which sets the wave length

to be \geq 2 μ m

OSC Chicane and Limitations on IOTA Optics (2)

Beta-function in the chicane center

- Behavior of the horizontal β-function determines the cooling range for horizontal degree of freedom
 - At optimum $\alpha^* = 0$
 - ⇒ Cooling acceptance:

$$\varepsilon_{\max} = \frac{\mu_0^2}{k^2 \left(\beta_p M_{51}^2 - 2\alpha_p M_{51} M_{52} + \gamma_p M_{52}^2\right)} \xrightarrow{\beta_p \approx \frac{L_t^2}{\beta^*}} \approx \frac{\mu_0^2}{k^2 \Phi^2 h^2 \beta^*}$$

For known rms emittance, ε , we can rewrite it as following

$$n_{\sigma x} \equiv \sqrt{\frac{\varepsilon_{\max}}{\varepsilon}} \approx \frac{\mu_0}{k \Phi h \sqrt{\varepsilon \beta^*}} \xrightarrow{\Phi D^* h = 2\Delta s \frac{\lambda_x}{\lambda_s + \lambda_x}} n_{\sigma x} = \frac{\mu_0}{2k \Delta s} \left(1 + \frac{\lambda_s}{\lambda_x}\right) \sqrt{\frac{A_x^*}{\varepsilon}} \qquad A_x^* = \frac{D^{*2}}{\beta^*}$$

Thus the cooling range, $n_{\sigma x}$, determines the dispersion invariant A_x^* Average value of A_x in dipoles determines the equilibrium emittance.

- A_x^* is large and A_x needs to be reduced fast to get an acceptable value of the equilibrium emittance (ε)
- Getting sufficiently large cooling acceptance requires long wave length of the radiation: another reason for $\lambda \ge 2~\mu m$

Linear Beam Optics for Cooling Chicane

<u>Major parameters of</u>		
<u>cooling chicane</u>		
Beam energy	100 MeV	
Dipole type	Rbend	XX Beta Function [m]
B of dipole	4.14 kG	
L of dipole	10 cm	
Orbit offset, h	28.4 mm	
Delay, ∆s	3 mm	
GdL of Qd quad	720 Gs	0 1 2 3 4 5 S[m]
β *	4 cm	📕 BetaX 🔳 BetaY 📕 DispX 📕 DispY
D _x *	66 cm	
Damping rates ratio, λ_x/λ_s	1.86	
Basic wave length, λ	2.2 μm	
Cooling range, $(\Delta p/p)_{max}$	$\pm 1.2 \cdot 10^{-3}$	
Cooling acceptance, ϵ_{max}	0.46 μ m	

Sample Lengthening on the Travel through Chicane

- Very large sample lengthening on the travel through chicane
- High accuracy of dipole field is required to prevent uncontrolled lengthening, ∆(*BL*)/(*BL*)_{dipole}<10⁻³

Sample lengthening due to momentum spread (top) and due to betatron motion (bottom)

Non-liner Sample Lengthening

- Adjor contribution to the 2nd order lengthening comes from particle angle: $\Delta s_2 = \int_{-L/2}^{L_1/2} \frac{\theta(s)^2}{2} ds$
- Expressing it through particle phase in the chicane center (μ_0), particle Courant-Snyder invariant (ϵ) and Twiss parameters =>

$$\Delta s_{2} = \frac{\varepsilon}{2} (I_{1} - I_{2} \cos(2\mu_{0})), \qquad I_{1} = \int_{0}^{\mu_{1}/2} (1 + \alpha^{2}(\mu)) d\mu,$$
$$I_{2} = \int_{0}^{\mu_{1}/2} ((1 - \alpha^{2}(\mu)) \cos(2\mu) - 2\alpha(\mu) \sin(2\mu)) d\mu$$

- \Rightarrow maximum lengthening: $\Delta s_2 = \frac{\varepsilon}{2} (I_1 + |I_2|)$
- For IOTA cooling chicane we have: $k\Delta s_{2x} \approx 26 \text{ rad}$, $k\Delta s_{2x} \approx 5 \text{ rad}$ for the boundary of cooling acceptance (ϵ_{max} =0.46 µm)
- Cooling is weakly affected if $k\Delta s_2 \le 1.5$
 - Thus, in the absence of compensation we lose a factor of 4 in cooling range ($\sqrt{26/1.5}$)
 - Effect of vertical motion is at the boundary of acceptable
 - It is the main reason why $\lambda \geq$ 2 μm

Compensation of Nonlinear Sample Lengthening

- Non-linear sample lengthening due to H. betatron motion can be compensated by 2 sextupoles in the chicane
 - Lengthening due to angle:

$$\Delta s_2 = -L_Q \theta^2 , \quad L_Q = \frac{\beta^*}{2} (I_1 + |I_2|) \approx 77 \text{ cm}$$

• Shortening due to sextupoles ($\delta \theta_s = x^2 / (2x_{os}^2)$ for defocusing sext):

$$\Delta s_2 = M_{s_{5,2}} \delta \theta_s \xrightarrow{\delta \theta_s = \frac{x^2}{2x_{os}^2} = \frac{(L_s \theta)^2}{2x_{os}^2}}_{M_{s_{5,2}} = 2\varphi L_s} \rightarrow = \frac{L_s^3 \varphi}{x_{os}^2} \theta^2 , \quad \begin{cases} L_s \approx 26.5 \text{ cm} \\ \varphi \approx 0.124 \text{ rad} \end{cases}$$

- Comparing, we obtain the sextupole strength: SdL≈ -11 kG/cm (defocus.)
- Vertical compensation is questionable
- Next round of simulations will follow

IOTA Optics for OSC

Optics functions and dispersion invariant for IOTA half ring

- Doublet focusing is adjusted to greatly reduce A_x at the first ring dipole
- Tunes are adjusted to be near half-integer
- **Geometric acceptances:** ε_x =20 µm, ε_x =16 µm, $\Delta p/p$ =±0.005

IOTA Optics

Main Parameters of IOTA storage ring for OSC

Circumference	40 m
Nominal beam energy	100 MeV
Bending field of main dipoles	4.8 kG
Tunes, Q_x / Q_y	5.464/4.454
Natural chromaticities, ξ_x / ξ_y	-19 / -23
Chromaticities with OSC sextupoles	-81 / 29*
\perp emittance, $\varepsilon_{SR}/2 = \varepsilon_x = \varepsilon_y$, rms	8.6 nm
Rms momentum spread, σ_p	1.29.10-4
SR damping times (ampl.), $\tau_s / (\tau_x = \tau_y)$	1.5 / 1.4 s
Cooling ranges* (before OSC), $n_{\sigma x}/n_{\sigma s}$	6.9 / 3.4

* For hor. plane it is defined as $\sqrt{\varepsilon_{max}/\varepsilon_x}$. The 2nd order lengthening is neglected. Expected that in the hor. plane it will not be a problem after compensation with sextupoles.

The 2nd order lengthening limits the vertical cooling range to $n_{\sigma y} \approx 4$

Chromaticities need to be compensated to be $|\xi| \le 20$

- Energy is reduced 150→100 MeV to reduce ε, σ_p and undulator period and length
- Operation on coupling resonance reduces horizontal emittance and introduces vertical damping
- Tunes are chosen to maximize dynamic aperture limitation by OSC sextupoles

Dynamic Aperture Limitation by Sextupoles of OSC Insert

Introduce dimensionless variables

$$\tilde{\theta} = \beta^2 \frac{\theta + \alpha x / \beta}{x_{0S}^2}, \quad \tilde{x} = \frac{\beta x}{x_{0S}^2} \quad \text{where} \quad x_{0S}^2 = \frac{pc}{e(SL)}$$

Then the following transforms drive particle motion

$$\begin{bmatrix} \tilde{x} \\ \tilde{\theta} \end{bmatrix}' = \begin{bmatrix} \cos \mu & \sin \mu \\ -\sin \mu & \cos \mu \end{bmatrix} \begin{bmatrix} \tilde{x} \\ \tilde{\theta} \end{bmatrix}, \quad \tilde{\theta}' = \tilde{\theta} + \frac{\tilde{x}^2}{x_{0s}^2}$$

- In vicinity of 3rd order resonance: $\tilde{x}_b \approx 25 \left| [\nu] - \frac{1}{3} \right| \Rightarrow \varepsilon_b \approx \frac{625 x_{0S}^4}{\beta^3} \left([\nu] - \frac{1}{3} \right)^2$
- Far from the resonance the stability boundary can be estimated from the phase space distortion =>

$$\tilde{x}_b \approx 3 \implies \mathcal{E}_b \approx \frac{9{x_{0S}}^4}{\beta^3}$$

Transition happens at detuning $\Delta v \approx 0.1$

Dynamic Aperture Limitation by Sextupoles of OSC Insert(2)

- Phase advance between OSC sextupoles AQx=0.451
 - Although it is close to half integer it does not help with cancellation of sextupole effect

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013

 Operation closer to halfinteger resonance improves dynamic aperture

• For estimate we use

$$\varepsilon_{bx} \approx \frac{9x_{0S}^{4}}{\beta_{x}^{3}}, \quad x_{0S}^{2} = \frac{pc}{e(SL)}$$

ightarrowε_{bx}=14 μm, n_{σx}≈40 (compare to ε_{x_geom}=20 μm)

- Looks like aperture limitation by OSC sextupoles looks OK
- Orbit stability within sextupoles <100 μm
- Detailed simulations are required

<u>Undulators</u>

 Undulator period was chosen so that λ|_{θ=0}=2.2 μm

Rms beam sizes in absence of OSC, σ_x =0.25 mm - in undulators

Radiation wavelength at zero angle	2.2 μ m
Undulator parameter, K	0.8
Undulator period	12.9 cm
Number of periods, m	6
Total undulator length, L_w	0.77 m
Peak magnetic field	664 G
Distance between centers of undulators	3.3 m
Energy loss per undulator per pass	22 meV
Average power per undulator for N _e =10 ⁶	26 nW
Radiation size in 2 ^{-nd} undulator, HWHM	0.35 mm

Main parameters of p	<u>assive OSC</u>
Band	2.2 - 3.3 μm
Angular acceptance	4.1 mrad
Optics system radius	7 mm
Damp. rates (x=y/s)	6.5/7.6 s ⁻¹

- Passive OSC increases the SR damping rates by about one order of magnitude
- Optical amplifier with 20 dB gain could increase the damping rate by factor of ~3
 - Factor of 3 will be lost due to smaller bandwidth
 - Detailed design is pending

Focusing of Beam Radiation to OA and Kicker

- Two possibilities
 - For passive OSC: four lens system with complete suppression of depth of field

- Two lens system (F=8 cm, radius 3.5 mm)
 - Reasonable compromise between 4 major requirements
 - The spot size in OA to be sufficiently small: r<60 μm
 - $\Rightarrow~$ diffraction limited size in OA: HWHM=12 $\mu m~$ or total size ~~30 $\mu m~$
 - \Rightarrow size due to beam convergence/divergence at OA input/exit $\approx 50 \ \mu m$

Other Limitations

- Touschek lifetime and multiple IBS limit the number of particles in the bunch, N_e~10⁶
- Scattering on the residual gas results in short lifetime in the conditions of small cooling acceptance
- Quantum effects play little role in the OSC cooling

Quantum Mechanical Treatment of Transit-Time Optical Stochastic Cooling of Muons

A. E. Charman¹ and J. S. Wurtele^{1,2}

¹Department of Physics, U.C. Berkeley, Berkeley, CA 94720^{*}

²Center for Beam Physics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(Dated: April 9, 2009)

SLAC-PUB-8662 December 2000

Quantum theory of Optical Stochastic Cooling *

S. Heifets,

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

M.Zolotorev, Lawrence Berkeley National Laboratory, Berkeley, CA 94729, USA

<u>Conclusions</u>

- Optical stochastic cooling looks as a promising technique for future hadron colliders
- Experimental study of OSC in Fermilab is in its initial phase
 - It is aimed to validate cooling principles and to demonstrate cooling with and without optical amplifier
 - Even in the absence of amplification (passive system, G = 1) the OSC damping exceeds SR damping by about an order of magnitude
- The beam intensity ranges from a single electron to the bunch population limited by operation at the optimum gain (10⁸-10⁹)
 - Single electron cooling localization of electron wave function and essence of quantum mechanics
 - Quantum noise for passive cooling
 - Cooling at the optimal gain (ultimate cooling) gets us to otherwise hidden details of OSC, in particular, to signal suppression

Backup Slides

Basics of OSC – Radiation from Undulator

- Radiation of ultra-relativistic particle is concentrated in 1/γ angle
- Undulator parameter:

$$K \equiv \gamma \theta_e = \frac{\lambda_{wgl}}{2\pi} \frac{eB_0}{mc^2}$$

■ For K ≥ 1 the radiation is mainly radiated into higher harmonics

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev,]

Liénard-Wiechert potentials and Efield of moving charge in wave zone

$$\begin{cases} \varphi(\mathbf{r},t) = \frac{e}{(R - \boldsymbol{\beta} \cdot \mathbf{R})} \Big|_{t-R/c} \\ \mathbf{A}(\mathbf{r},t) = \frac{e\mathbf{v}}{(R - \boldsymbol{\beta} \cdot \mathbf{R})} \Big|_{t-R/c} \end{cases} \Rightarrow$$

$$\mathbf{E}(\mathbf{r},t) = \frac{e}{c^2} \frac{(\mathbf{R} - \boldsymbol{\beta} \cdot \boldsymbol{R})(\mathbf{a} \cdot \mathbf{R}) - \mathbf{a}\boldsymbol{R}(\boldsymbol{R} - \boldsymbol{\beta} \cdot \mathbf{R})}{(\boldsymbol{R} - \boldsymbol{\beta} \cdot \mathbf{R})^3} \bigg|_{t - R/c}$$

Basics of OSC – Radiation Focusing to Kicker Undulator

Modified Kirchhoff formula

$$E(r) = \frac{\omega}{2\pi i c} \int_{S} \frac{E(r')}{|r-r'|} e^{i\omega|r-r'|} ds'$$

$$\Longrightarrow \qquad E(r) = \frac{1}{2\pi i c} \int_{S} \frac{\omega(r') E(r')}{|r-r'|} e^{i\omega|r-r'|} ds$$

- Effect of higher harmonics
 - Higher harmonics are normally located outside window of optical lens transparency and are absorbed in the lens material

Dependences of retarded time (t_p) and E_x on time for helical undulator Only first harmonic is retained in the calculations presented below

Basics of OSC – Longitudinal Kick for K<<1

- For $K \ll 1$ refocused radiation of pickup undulator has the same structure as radiation from kicker undulator. They are added coherently: $\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 e^{i\phi} \xrightarrow{\mathbf{E}_1 = \mathbf{E}_2} 2\cos(\phi/2)\mathbf{E}_1 e^{i\phi/2}$
- $\Rightarrow \quad \text{Energy loss after passing 2 undulators} \\ \Delta U \propto \left| E^2 \right| = 4\cos\left(\phi/2\right)^2 \left| \mathbf{E}_1^2 \right| = 2\left(1 + \cos\phi\right) \left| \mathbf{E}_1^2 \right| = 2\left(1 + \cos\left(kM_{56}\frac{\Delta p}{p}\right)\right) \left| \mathbf{E}_1^2 \right|$
- Large derivative of energy loss on momentum amplifies damping rates and creates a possibility to achieve damping without optical amplifier
 - SR damping: $\lambda_{\parallel_SR} \approx \frac{2\Delta U_{SR}}{pc} f_0$

• OSC:
$$\lambda_{\parallel OSC} \approx f_0 \frac{2\Delta U_{wgl}}{pc} (GkM_{56}) \xrightarrow{kM_{56}(\Delta p/p)_{max} = \pi} f_0 \frac{2\Delta U_{wgl}}{pc} \left(\frac{G}{(\Delta p/p)_{max}} \right)$$

where G - optical amplifier gain, $(\Delta p/p)_{max}$ - cooling system acceptance $\Rightarrow \lambda_{\parallel osc} \propto B^2 L \propto K^2 L$ - but cooling efficiency drops with K increase above ~1

<u>Basics of OSC – Longitudinal Kick for K<<1(continue)</u>

Radiation wavelength depends on θ as

$$\lambda = \frac{\lambda}{2\gamma^2} \left(1 + \gamma^2 \theta^2 \right)$$

Limitation of system bandwidth by (1) optical amplifier band or (2) subtended angle reduce damping rate

$$\lambda_{\parallel_SR} = \lambda_{\parallel_SR0} F(\gamma \theta_{\rm m}), \qquad F(x) = 1 - \frac{1}{\left(1 + x^2\right)^3}$$

For narrow band:
$$\Delta U_{wgl} = \Delta U_{wgl0} \left(\frac{3\Delta \omega}{\omega} \right), \quad \frac{3\Delta \omega}{\omega} << 1$$

where $\Delta U_{wgl0} = \frac{e^4 B^2 \gamma^2 L}{3m^2 c^4} \begin{cases} 1, & \text{Flat wiggler} \\ 2, & \text{Helical wiggler} \end{cases}$ the energy radiated in one undulator

Basics of OSC – Radiation from Flat Undulator

For arbitrary undulator parameter we have

$$\Delta U_{OSC_{-F}} = \frac{1}{2} \frac{4e^4 B_0^2 \gamma^2 L}{3m^2 c^4} GF_f \left(K, \gamma \theta_{max}\right) F_u \left(\kappa_u\right)$$

$$F_u \left(\kappa_u\right) = J_0 \left(\kappa_u\right) - J_1 \left(\kappa_u\right), \quad \kappa_u = K^2 / \left(4\left(1 + K^2 / 2\right)\right)$$

Fitting results of numerical integration yields:

$$F_h \left(K, \infty\right) \approx \frac{1}{1 + 1.07K^2 + 0.11K^3 + 0.36K^4}, \quad K = \gamma \theta_e \le 4$$

$$\Theta_m^{2} \cdot F_h(K, \Theta_m) \cdot F_u(K)$$

$$\int_{0}^{0} \frac{\theta_m = \infty}{\theta_m = 1} \frac{\theta_m = 1}{\theta_m = 1}$$

$$K$$

Dependence of wave length on θ:

$$\lambda \approx \frac{\lambda_{wgl}}{2\gamma^2} \left(1 + \gamma^2 \left(\theta^2 + \frac{\theta_e^2}{2} \right) \right)$$

 $K \equiv \gamma \theta_e$

- Flat undulator is "more effective" than the helical one
- For the same K and λ_{wgl} flat undulator generates shorter wave lengths

For both cases of the flat and helical undulators and for fixed B a decrease of λ_{wgl} and, consequently, λ yields kick increase

but wavelength is limited by both beam optics and light focusing

Basics of OSC – Correction of the Depth of Field

- It was implied above that the radiation coming out of the pickup undulator is focused on the particle during its trip through the kicker undulator
 - It can be achieved with lens located at infinity

$$\frac{1}{2F + \Delta s} + \frac{1}{2F - \Delta s} = \frac{1}{F} \quad \rightarrow \quad \frac{1}{F - \Delta s^2 / 4F} = \frac{1}{F} \quad \xrightarrow{F \to \infty} \quad \frac{1}{F} = \frac{1}{F}$$

- but this arrangement cannot be used in practice
- A 3-lens telescope can address the problem within limited space $\begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -F_1^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -F_2^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ -F_1^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

