
Optical Stochastic Cooling 
Experiment at IOTA  

Valeri Lebedev 
IOTA FOCUS WORKSHOP 
April 28-29, 2015 
Fermilab 

 

    



Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013 2

Contents  
 Introduction to Optical Stochastic Cooling 
 Basics of Optical Stochastic Cooling 
 Optical Stochastic Cooling at IOTA ring 
 Conclusions   



Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013 3

Principles of Optical Stochastic Cooling  
 OSC - suggested by Zolotorev, Zholents and Mikhailichenko (1994) 
 OSC obeys the same principles as the microwave stochastic cooling, 

but exploits the superior bandwidth of optical amplifiers ~ 1014 Hz 

 
 At optimum the cooling rates of stochastic cooling are 

Dimensionless damping rate:  

 Potential gain in damping rates: 103÷104  
 Pickup and kicker must operate at the optical 

frequencies (same band as an opt. amplifier) 
 Undulators suggested for pickups & kickers 

 Slow particles do not radiate at optical 
frequencies  
 OSC can operate only with ultra-relativistic particles 
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Principles of Optical Stochastic Cooling (continue) 
 Radiation wave length  
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 Correction signal is proportional to longitudinal position change on 
the travel from pickup to kicker 

 Only longitudinal kicks are effective for ultra-relativistic beam 
 s-x coupling for long. cooling  
 x-y coupling for  vertical cooling 

 Introduce partial slip factor: describes a long. particle displacement 
on the way from pickup to kicker with p/p0 & no betatron motion   
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Test of OSC in Fermilab   
 First attempt to test the OSC in BATES, ~2007  

 Existing electron synchrotron  
 Did not get sufficient support  

 Presently Fermilab is constructing a dual purpose small electron ring 
called IOTA to test: 
 Integrable optics 
 OSC 

 Part of ASTA  
program  
 Full energy  

injection  
from  
SC linac 

 Test in a small  
electron ring is a cost  
effective way to test the OSC   
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Mpk - pickup-to-kicker matrix 
Mkp - kicker-to-pickup matrix 
M = MpkMkp – ring matrix 

Basics of OSC: Damping Rates 
 Pickup-to-Kicker Transfer Matrix  

 Vertical plane is uncoupled and we omit it  
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 Partial slip factor (pickup-to-kicker) describes a longitudinal particle 
displacement in the course of synchrotron motion   
      51 1 52 1 5656 M DM M D M     

 Linearized longitudinal kick in pickup wiggler   
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 Cooling rates (per turn)  
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sin( ) sin( )x x p pk s a a   

Basics of OSC: Cooling Range  
 Cooling force depends on s nonlinearly   

          0 0 sinp pk s k s
p p
        

where    
and ax & ap are the amplitudes of longitudinal displacements in cooling 
chicane due to  and L motions measured in units of laser phase 

 
 
 

2 2 2 2
51 51 52 52

56

2 , where 2

/

x p p p p p p

p

a k M M M M x x

a kM p p

              

   

 Averaging yields the form-factors for damping rates  
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 Damping requires both lengthening 
 amplitudes (ax  and ap) to be smaller than 2.405 
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Transfer Matrix for OSC Chicane  

 
Chicane displaces the beam closer to its center 

 
Leaving only major terms we obtain 

 
Matrix comparison: 
       Exact (Mt) versus 
       approximate (Mta) 
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OSC Chicane and Limitations on IOTA Optics  
Dispersion in the chicane center 
 In the first approximation  

  the orbit offset in the chicane (h),  
  the path lengthening (s), 
  the defocusing strength of Qd ()  
  and dispersion in the chicane center (D*)  
determine the entire cooling dynamics 

 s is set by delay in the amplifier => M56 
s = 3 mm is chosen, includes delay in lenses) 

 Choose  */ 0dD ds     =>   *
 ts L
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   
 D*h determines the ratio of decrements 

 Choose: x=2s => * 4 / 3D h s     
 For the wave length of =2.2 m and momentum spread of p=1.2·10-4  
    Cooling acceptance for longitudinal degree of freedom (np =3.6) 

 Thus D* determines the ratio of cooling rates and cooling acceptance 
in momentum  

This is the first limitation which sets the wave length  
to be 2 m 
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OSC Chicane and Limitations on IOTA Optics (2) 
Beta-function in the chicane center 
 Behavior of the horizontal -function determines the cooling range 

for horizontal degree of freedom 
 At optimum * = 0 
 Cooling acceptance:  
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 For known rms emittance, , we can rewrite it as following 
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 Thus the cooling range, nx, determines the dispersion invariant Ax
* 

 Average value of Ax
 in dipoles determines the equilibrium emittance.  

 Ax
*  is large and Ax

 needs to be reduced fast to get an acceptable 
value of the equilibrium emittance () 

 Getting sufficiently large cooling acceptance requires long wave 
length of the radiation: another reason for 2 m 
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Linear Beam Optics for Cooling Chicane  
Major parameters of 
cooling chicane 
Beam energy 100 MeV 
Dipole type Rbend 
B of dipole 4.14 kG 
L of dipole 10 cm 
Orbit offset, h 28.4 mm 
Delay, s 3 mm 
GdL of Qd quad  720 Gs 
x*  4 cm 
Dx

* 66 cm 
Damping rates ratio, x/s 1.86 
Basic wave length,  2.2 m 
Cooling range, (p/p)max ±1.2·10-3 
Cooling acceptance, max 0.46 m 
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Sample Lengthening on the Travel through Chicane 

  

 
Sample lengthening due to momentum spread (top)  

and due to betatron motion (bottom) 

 Very large sample 
lengthening on the 
travel through 
chicane 

 High accuracy of 
dipole field is 
required to 
prevent 
uncontrolled 
lengthening, 
 (BL)/(BL)dipole<10-3 
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Non-liner Sample Lengthening  
 Major contribution to the 2nd order lengthening comes from particle 

angle: 
  

 Expressing it through particle phase in the chicane center (0), 
particle Courant-Snyder invariant () and Twiss parameters => 
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for  the boundary of cooling acceptance (max=0.46 m) 
 Cooling is weakly affected if 2 1.5k s   

 Thus, in the absence of compensation we lose a factor of 4 in 
cooling range ( 26 /1.5 )  

 Effect of vertical motion is at the boundary of acceptable 
 It is the main reason why 2 m 
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Compensation of Nonlinear Sample Lengthening  

    
 Non-linear sample lengthening due to H. betatron motion can be 

compensated by 2 sextupoles in the chicane 
 Lengthening due to angle:  

 
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2
2 1 2, 77 cm

2Q Qs L L I I       
 Shortening due to sextupoles (  2 2/ 2S osx x  for defocusing sext) :  
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 Comparing, we obtain the sextupole strength: SdL≈ -11 kG/cm (defocus.) 
 Vertical compensation is questionable 
 Next round of simulations will follow 
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IOTA Optics for OSC 

 

   
Optics functions and dispersion invariant for IOTA half ring 

 Doublet focusing is adjusted to greatly reduce Ax at the first ring dipole 
  Tunes are adjusted to be near half-integer 
 Geometric acceptances: x=20 m, x=16 m, p/p=±0.005 
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IOTA Optics 
Main Parameters of IOTA storage ring for OSC 

Circumference 40 m 
Nominal beam energy   100 MeV 
Bending field  of main dipoles 4.8 kG 
Tunes, Qx / Qy 5.464/4.454 
Natural chromaticities, x / y -19 / -23 
Chromaticities with OSC sextupoles -81 / 29 
 emittance, SR /2 = x  =y,  rms   8.6 nm 
Rms momentum spread, p  1.29·10-4 
SR damping times (ampl.), s / (x= y) 1.5 / 1.4 s 
Cooling ranges* (before OSC), nx/ns  6.9 / 3.4 

 * For hor. plane it is defined as max / x  . The 2nd order 
lengthening is neglected. Expected that in the hor. 
plane it will not be a problem after compensation with 
sextupoles. 
The 2nd order lengthening limits the vertical cooling 
range to ny  ≈ 4 

  Chromaticities need to be compensated to be ||20  

 Energy is reduced 
150→100 MeV to 
reduce , p and 
undulator period and 
length 

 Operation on 
coupling resonance 
reduces horizontal 
emittance and 
introduces vertical 
damping 

 Tunes are chosen to 
maximize dynamic 
aperture limitation 
by OSC sextupoles  
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Dynamic Aperture Limitation by Sextupoles of OSC Insert 
 Introduce dimensionless variables 

2
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 Far from the resonance the stability 
boundary can be estimated from the 
phase space distortion =>  
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 Transition happens at detuning ≈0.1 
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Dynamic Aperture Limitation by Sextupoles of OSC Insert(2) 
 Phase advance between OSC sextupoles Qx=0.451 

 Although it is close to half integer it does not help with cancellation of 
sextupole effect   

 

 
Phase space immediately upstream of first sextupole;  

top – nominal tune, bottom closer to half integer 

 Operation closer to half-
integer resonance 
improves dynamic 
aperture  

 For estimate we use 

 
4

20
0S3

9 ,S
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x
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e SL




   

 bx=14 m, nx≈40  
  (compare to x_geom=20 m) 

 Looks like aperture 
limitation by OSC 
sextupoles looks OK 

 Orbit stability within 
sextupoles <100 m 

 Detailed simulations are 
required 
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Undulators 
 Undulator period was 

chosen so that 
=0=2.2 m 

 
Rms beam sizes in absence of OSC, 

x=0.25 mm - in undulators 

Radiation wavelength at zero angle 2.2 m 
Undulator parameter, K 0.8 
Undulator period 12.9 cm 
Number of periods, m 6 
Total undulator length, Lw 0.77 m 
Peak magnetic field 664 G 
Distance between centers of  undulators 3.3 m 
Energy loss per undulator per pass 22 meV 
Average power per undulator for Ne=106 26 nW 
Radiation size in 2-nd undulator, HWHM 0.35 mm 
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Cooling Rates  

 
 Passive OSC increases the SR damping rates by about one order of 

magnitude 
 Optical amplifier with 20 dB gain could increase the damping rate by 

factor of ~3 
 Factor of 3 will be lost due to smaller bandwidth 
 Detailed design is pending   

 

Main parameters of passive OSC 
Band 2.2 – 3.3 m 
Angular acceptance 4.1 mrad 
Optics system radius 7 mm 
Damp. rates (x=y/s) 6.5/7.6 s-1 
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Focusing of Beam Radiation to OA and Kicker 
 Two possibilities 

 For passive OSC: 
four lens system 
with complete 
suppression of 
depth of field 

 Two lens system (F=8 cm, radius – 3.5 mm) 
 Reasonable compromise between 4 major requirements 
 The spot size in OA to be sufficiently small: r<60 m 

 diffraction limited size in OA: HWHM=12 m  or total size  r≈30 m 
 size due to beam convergence/divergence at OA input/exit ≈50 m 
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Other Limitations 
 Touschek lifetime and multiple IBS limit the number of particles in 

the bunch, Ne~106  
 Scattering on the residual gas results in short lifetime in the 

conditions of small cooling acceptance 
 Quantum effects play little role in the OSC cooling 
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Conclusions 
 Optical stochastic cooling looks as a promising technique for future 

hadron colliders  
 Experimental study of OSC in Fermilab is in its initial phase  

 It is aimed to validate cooling principles and to demonstrate 
cooling with and without optical amplifier 
 Even in the absence of amplification (passive system, G = 1) 

the OSC damping exceeds SR damping by about an order of 
magnitude 

 The beam intensity ranges from a single electron to the bunch 
population limited by operation at the optimum gain (108-109) 
 Single electron cooling - localization of electron wave function 

and essence of quantum mechanics 
 Quantum noise for passive cooling 

 Cooling at the optimal gain (ultimate cooling) gets us to otherwise 
hidden details of OSC, in particular, to signal suppression 
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 Liénard-Wiechert potentials and E-
field of moving charge in wave zone  
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Basics of OSC – Radiation from Undulator  
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 Radiation of ultra-relativistic 

 particle is concentrated in 1/
 angle 

 Undulator parameter:   
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 For K ≥ 1 the radiation is mainly  
radiated into higher harmonics  
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Basics of OSC – Radiation Focusing to Kicker Undulator 
 Modified Kirchhoff formula  

   
e

2
i r r

S

E r
E r ds

ic r r




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=>       1 e
2
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r E r
E r ds
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


 


  

 Effect of higher harmonics 
 Higher harmonics are normally located outside window of optical 

lens transparency and are absorbed in the lens material 

 
Dependences of retarded time (tp) and Ex on time for helical undulator 

 Only first harmonic is retained in the calculations presented below 
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Basics of OSC – Longitudinal Kick for K<<1 
 For K << 1 refocused radiation of pickup undulator has the same 

structure as radiation from kicker 
undulator. They are added coherently: 

 1 2 /2
1 2 12 cos / 2i ie e   E EE E E E  

 Energy loss after passing 2 undulators 

   22 2 2 2
1 1 56 14cos / 2 2 1 cos 2 1 cos pU E kM

p
 

  
        

  
E E E  

 Large derivative of energy loss on  
momentum amplifies damping rates and 
creates a possibility to achieve damping  
without optical amplifier 

 SR damping:  ||_ 0
2 SR

SR
U f
pc

 
  

 OSC:              

 
56 max/

||_ 0 56 0
max

2 2
/

kM p pwgl wgl
OSC

U U Gf GkM f
pc pc p p

     
     

 

where G - optical amplifier gain, (p/p)max  - cooling system acceptance  
 2 2

||_ OSC B L K L     - but cooling efficiency drops with K increase above ~1 
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Basics of OSC – Longitudinal Kick for K<<1(continue) 
 Radiation wavelength depends on   as 

 2 2
2 1

2
  


   
Limitation of system bandwidth by (1) optical amplifier band or  
(2) subtended angle reduce damping rate  

   
 ||_ ||_ 0 m 32

1, 1
1

SR SR F F x
x

    
  

 

 For narrow band: 0
3 3, 1wgl wglU U  
 
      

    

      where 
4 2 2

0 2 4

1 , lat wiggler
2 , Helical wiggler3wgl

Fe B LU
m c
 

  
  the energy radiated in one undulator  
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Basics of OSC – Radiation from Flat Undulator  
 For arbitrary undulator parameter we have  

   
4 2 2

0
_ 2 4 max

41
2 3

,fC u uOS F GF Ke B LU
m

F
c

 
   

        2 2
0 1J J , / 4 1 / 2u u u u uF K K        

Fitting results of numerical integration yields: 

  2 3 4

1, , 4
1 1.07 0.11 0.36h eF K K

K K K
   

    

 
 For both cases of the flat and helical undulators and for fixed B  

a decrease of wgl  and, consequently,  yields kick increase 
  but wavelength is limited by both beam optics and light focusing  

 Dependence of wave 
     length on : 

2
2 2

2 1
2 2

wgl e

eK

   




  
       


 

 Flat undulator is “more 
effective” than the 
helical one 

 For the same K and 
wgl flat undulator 
generates shorter 
wave lengths 
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Basics of OSC – Correction of the Depth of Field  
 It was implied above that the 

radiation coming out of the 
pickup undulator is focused 
on the particle during its trip through the kicker undulator 
 It can be achieved with lens located at infinity  

2

1 1 1 1 1 1 1
2 2 / 4

F

F s F s F F s F F F F
     

        
  but this arrangement cannot be used in practice  

 A 3-lens telescope can address the problem within limited space 
1 1
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