Optical Stochastic Cooling Experiment at IOTA

Valeri Lebedev

IOTA FOCUS WORKSHOP
April 28-29, 2015
Fermilab
Contents

- Introduction to Optical Stochastic Cooling
- Basics of Optical Stochastic Cooling
- Optical Stochastic Cooling at IOTA ring
- Conclusions
Principles of Optical Stochastic Cooling

- OSC - suggested by Zolotorev, Zholents and Mikhailichenko (1994)
- OSC obeys the same principles as the microwave stochastic cooling, but exploits the superior bandwidth of optical amplifiers ~ 10^{14} Hz

At optimum the cooling rates of stochastic cooling are

Dimensionless damping rate: $\lambda f_0 \approx \frac{W}{N} \Leftrightarrow \lambda \approx \frac{1}{N_{\text{sample}}}$

- Potential gain in damping rates: $10^3 \div 10^4$
- Pickup and kicker must operate at the optical frequencies (same band as an opt. amplifier)
- Undulators suggested for pickups & kickers
- Slow particles do not radiate at optical frequencies
- OSC can operate only with ultra-relativistic particles
Principles of Optical Stochastic Cooling (continue)

- Radiation wave length
 \[\lambda = \frac{\lambda_{wgl}}{2\gamma^2} \left(1 + \gamma^2 \left(\frac{1}{2} \theta_e^2 + \theta^2 \right) \right) \]

 - helical undulator
 \[\lambda = \frac{\lambda_{wgl}}{2\gamma^2} \left(1 + \gamma^2 \theta_e^2 \right) \]

 - flat undulator

 Undulator parameter: \(K = \gamma \theta_e \Rightarrow \lambda_{|\theta=0} = \lambda_{wgl} \left(1 + K^2 / 2 \right) / \left(2\gamma^2 \right) \)

- Correction signal is proportional to longitudinal position change on the travel from pickup to kicker

- Only longitudinal kicks are effective for ultra-relativistic beam
 - \(s-x \) coupling for long. cooling
 - \(x-y \) coupling for vertical cooling

- Introduce partial slip factor: describes a long. particle displacement on the way from pickup to kicker with \(\Delta p/p \neq 0 \) & no betatron motion
 \[\tilde{M}_{56} = M_{51}D_1 + M_{52}D'_1 + M_{56} \quad \Leftrightarrow \quad \Delta s = \tilde{M}_{56} \left(\Delta p / p \right) \]

- Cooling rates:
 \[\lambda_x = \frac{k \xi_0}{2} \left(M_{56} - \tilde{M}_{56} \right) \]
 \[\lambda_s = \frac{k \xi_0}{2} \tilde{M}_{56} \]

 \[\Leftrightarrow \quad \lambda_x + \lambda_s = \frac{k \xi_0}{2} M_{56}^{pk} \]
Test of OSC in Fermilab

- First attempt to test the OSC in BATES, ~2007
 - Existing electron synchrotron
 - Did not get sufficient support

- Presently Fermilab is constructing a dual purpose small electron ring called IOTA to test:
 - Integrable optics
 - OSC

- Part of ASTA program
 - Full energy injection from SC linac

- Test in a small electron ring is a cost effective way to test the OSC
Basics of OSC: Damping Rates

- **Pickup-to-Kicker Transfer Matrix**

 Vertical plane is uncoupled and we omit it

\[
M^{pk} = \begin{bmatrix}
M_{11} & M_{12} & 0 & M_{16} \\
M_{21} & M_{22} & 0 & M_{26} \\
M_{51} & M_{52} & 1 & M_{56} \\
0 & 0 & 0 & 1
\end{bmatrix}, \quad x = \begin{bmatrix}
x \\
\theta_x \\
s \\
\Delta p / p
\end{bmatrix}
\]

- **Partial slip factor (pickup-to-kicker)** describes a longitudinal particle displacement in the course of synchrotron motion

\[
\tilde{M}_{56} = M_{51} D_1 + M_{52} D_1' + M_{56}
\]

- **Linearized longitudinal kick in pickup wiggler**

\[
\frac{\delta p}{p} = k \xi_0 \Delta s = k \xi_0 \left(M_{51} x_1 + M_{52} \theta_x + M_{56} \frac{\Delta p}{p} \right)
\]

- **Cooling rates (per turn)**

\[
\lambda_x = \frac{k \xi_0}{2} \left(M_{56} - \tilde{M}_{56} \right)
\]
\[
\lambda_s = \frac{k \xi_0}{2} \tilde{M}_{56}
\]

\[\iff\]
\[
\lambda_x + \lambda_s = \frac{k \xi_0}{2} M^{pk}_{56}
\]
Basics of OSC: Cooling Range

cooling force depends on \(\Delta s \) nonlinearly

\[
\frac{\delta p}{p} = k \xi_0 \Delta s \quad \Rightarrow \quad \frac{\delta p}{p} = \xi_0 \sin(k \delta s)
\]

where

\[k \delta s = a_x \sin(\psi_x) + a_p \sin(\psi_p) \]

and \(a_x \) & \(a_p \) are the amplitudes of longitudinal displacements in cooling chicane due to \(\perp \) and \(L \) motions measured in units of laser phase

\[
a_x = k \sqrt{\varepsilon \left(\beta_p M_{51}^2 - 2\alpha_p M_{51}M_{52} + \gamma_p M_{52}^2 \right)} , \quad \text{where} \quad \varepsilon = \beta_p \theta^2 - 2\alpha_p x \theta + \gamma_p x^2
\]

\[
a_p = k \tilde{M}_{56} \left(\Delta p / p \right)
\]

Averaging yields the form-factors for damping rates

\[
\lambda_{s,x}(a_x, a_p) = F_{s,x}(a_x, a_p) \lambda_{s,x}
\]

\[
F_x(a_x, a_p) = \frac{2}{a_x} J_0(a_p) J_1(a_x)
\]

\[
F_p(a_x, a_p) = \frac{2}{a_p} J_0(a_x) J_1(a_p)
\]

Damping requires both lengthening amplitudes \((a_x \text{ and } a_p)\) to be smaller than \(\mu_0 \approx 2.405 \)
Transfer Matrix for OSC Chicane

Chicane displaces the beam closer to its center

\[M_{te} = \begin{pmatrix} 1 & L_d & 0 & \frac{L_d\Phi}{2} \\ 0 & 1 & 0 & \phi \\ \phi & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L_d & 0 & -\frac{L_d\Phi}{2} \\ 0 & 1 & 0 & -\phi \\ -\phi & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L_d & 0 & \frac{L_d\Phi}{2} \\ 0 & 1 & 0 & \phi \\ \phi & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L_d & 0 & -\frac{L_d\Phi}{2} \\ 0 & 1 & 0 & -\phi \\ -\phi & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

Leaving only major terms we obtain

\[M_{ta} = \begin{bmatrix} L_t\Phi + 1 & L_t(L_t\Phi + 2) & 0 & \Phi\cdot h\cdot L_t \\ \Phi & L_t\Phi + 1 & 0 & \Phi\cdot h \\ -\Phi\cdot h & -\Phi\cdot h\cdot L_t & 1 & 2\cdot \Delta s \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[\Delta s = \varphi^2 \left(L_1 + \frac{2}{3} L_d \right) \]

\[h = \varphi \left(L_1 + L_d \right) \]

Matrix comparison:

Exact \((M_t)\) versus approximate \((M_{ta})\)

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013
OSC Chicane and Limitations on IOTA Optics

Dispersion in the chicane center

- In the first approximation, the orbit offset in the chicane (h), the path lengthening (Δs), the defocusing strength of Q_d (Φ) and dispersion in the chicane center (D^*) determine the entire cooling dynamics.
- Δs is set by delay in the amplifier $\Rightarrow M_{56}$ ($\Delta s = 3$ mm is chosen, includes delay in lenses).
- Choose $(dD / ds)^* = 0 \Rightarrow D|_{s=\pm L_t} \approx D^*$
- $\Phi D^* h$ determines the ratio of decrements
 - Choose: $\lambda_x = 2 \lambda_s \Rightarrow \Phi D^* h \approx 4 \Delta s / 3$
- For the wave length of $\lambda = 2.2$ μm and momentum spread of $\sigma_p = 1.2 \cdot 10^{-4}$
 \Rightarrow Cooling acceptance for longitudinal degree of freedom ($n_{\sigma p} = 3.6$)
- Thus D^* determines the ratio of cooling rates and cooling acceptance in momentum

This is the first limitation which sets the wave length to be ≥ 2 μm
OSC Chicane and Limitations on IOTA Optics (2)

Beta-function in the chicane center

- Behavior of the horizontal β-function determines the cooling range for horizontal degree of freedom
 - At optimum $\alpha^* = 0$
 - Cooling acceptance:
 \[
 \varepsilon_{\text{max}} = \frac{\mu_0^2}{k^2 \left(\beta_0 M_{51}^2 - 2\alpha_0 M_{51} M_{52} + \gamma_0 M_{52}^2 \right)} \approx \frac{\mu_0^2}{k^2 \Phi^2 h^2 \beta^*} \]

- For known rms emittance, ε, we can rewrite it as following
 \[
 n_{\sigma x} = \sqrt{\frac{\varepsilon_{\text{max}}}{\varepsilon}} \approx \frac{\mu_0}{k \Phi h \sqrt{\varepsilon \beta^*}} \quad \Phi D^* h = 2\Delta \frac{\lambda_x}{\lambda_x + \lambda_s} \quad n_{\sigma x} = \frac{\mu_0}{2k \Delta} \left(1 + \frac{\lambda_s}{\lambda_x} \right) \sqrt{\frac{A_x^*}{\varepsilon}} \quad A_x^* = \frac{D^*}{\beta^*}
 \]

- Thus the cooling range, $n_{\sigma x}$, determines the dispersion invariant A_x^*
- Average value of A_x in dipoles determines the equilibrium emittance.
 - A_x^* is large and A_x needs to be reduced fast to get an acceptable value of the equilibrium emittance (ε)
- Getting sufficiently large cooling acceptance requires long wave length of the radiation: another reason for $\lambda \geq 2 \mu m$
Linear Beam Optics for Cooling Chicane

Major parameters of cooling chicane

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>100 MeV</td>
</tr>
<tr>
<td>Dipole type</td>
<td>Rbend</td>
</tr>
<tr>
<td>B of dipole</td>
<td>4.14 kG</td>
</tr>
<tr>
<td>L of dipole</td>
<td>10 cm</td>
</tr>
<tr>
<td>Orbit offset, h</td>
<td>28.4 mm</td>
</tr>
<tr>
<td>Delay, Δs</td>
<td>3 mm</td>
</tr>
<tr>
<td>GdL of Qd quad</td>
<td>720 Gs</td>
</tr>
<tr>
<td>β_x^*</td>
<td>4 cm</td>
</tr>
<tr>
<td>D_x^*</td>
<td>66 cm</td>
</tr>
<tr>
<td>Damping rates ratio, λ_x/λ_s</td>
<td>1.86</td>
</tr>
<tr>
<td>Basic wave length, λ</td>
<td>2.2 μm</td>
</tr>
<tr>
<td>Cooling range, $(\Delta p/p)_{\text{max}}$</td>
<td>$\pm 1.2 \times 10^{-3}$</td>
</tr>
<tr>
<td>Cooling acceptance, ε_{max}</td>
<td>0.46 μm</td>
</tr>
</tbody>
</table>

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013
Sample Lengthening on the Travel through Chicane

- Very large sample lengthening on the travel through chicane
- High accuracy of dipole field is required to prevent uncontrolled lengthening, $\Delta (BL)/(BL)_{\text{dipole}} < 10^{-3}$

Sample lengthening due to momentum spread (top) and due to betatron motion (bottom)
Non-linear Sample Lengthening

- Major contribution to the 2nd order lengthening comes from particle angle:
 \[
 \Delta s_2 = \int_{-L/2}^{L/2} \frac{\theta(s)^2}{2} ds
 \]

- Expressing it through particle phase in the chicane center (\(\mu_0\)), particle Courant-Snyder invariant (\(\varepsilon\)) and Twiss parameters =>
 \[
 I_1 = \int_0^{\mu/2} \left(1 + \alpha^2(\mu)\right) d\mu, \\
 I_2 = \int_0^{\mu/2} \left(\left(1 - \alpha^2(\mu)\right) \cos(2\mu) - 2\alpha(\mu) \sin(2\mu)\right) d\mu
 \]
 \[
 \Delta s_2 = \frac{\varepsilon}{2} \left(I_1 - I_2 \cos(2\mu_0)\right), \\
 \Rightarrow \text{maximum lengthening:} \quad \Delta s_2 = \frac{\varepsilon}{2} \left(I_1 + |I_2|\right)
 \]

- For IOTA cooling chicane we have: \(k\Delta s_2x \approx 26 \text{ rad}, k\Delta s_{2x} \approx 5 \text{ rad}\)
 for the boundary of cooling acceptance (\(\varepsilon_{\text{max}}=0.46 \text{ \(\mu\)m})

- Cooling is weakly affected if \(k\Delta s_2 \leq 1.5\)
 - Thus, in the absence of compensation we lose a factor of 4 in cooling range (\(\sqrt{26/1.5}\))
 - Effect of vertical motion is at the boundary of acceptable
 - It is the main reason why \(\lambda \geq 2 \text{ \(\mu\)m} \)
Non-linear sample lengthening due to H. betatron motion can be compensated by 2 sextupoles in the chicane

- Lengthening due to angle:
 \[\Delta s_2 = -L_Q \theta^2, \quad L_Q = \frac{\beta^*}{2} (I_1 + |I_2|) \approx 77 \text{ cm} \]

- Shortening due to sextupoles (\(\delta \theta_S = x^2 / (2x_{os}^2) \) for defocusing sext):
 \[\Delta s_2 = M_{s_{5,2}} \delta \theta_S \left(\frac{x^2}{2x_{os}^2} \frac{(L_S \theta)^2}{2x_{os}^2} \right) = L_S^3 \phi \theta^2, \quad \begin{cases} L_S \approx 26.5 \text{ cm} \\ \phi \approx 0.124 \text{rad} \end{cases} \]

- Comparing, we obtain the sextupole strength: \(SdL \approx -11 \text{ kG/cm} \) (defocus.)

- Vertical compensation is questionable

- Next round of simulations will follow
IOTA Optics for OSC

- Doublet focusing is adjusted to greatly reduce A_x at the first ring dipole
- Tunes are adjusted to be near half-integer
- Geometric acceptances: $\varepsilon_x = 20\ \mu m$, $\varepsilon_x = 16\ \mu m$, $\Delta p/p = \pm 0.005$

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013
IOTA Optics

Main Parameters of IOTA storage ring for OSC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>40 m</td>
</tr>
<tr>
<td>Nominal beam energy</td>
<td>100 MeV</td>
</tr>
<tr>
<td>Bending field of main dipoles</td>
<td>4.8 kG</td>
</tr>
<tr>
<td>Tunes, Q_x / Q_y</td>
<td>5.464/4.454</td>
</tr>
<tr>
<td>Natural chromaticities, ξ_x / ξ_y</td>
<td>-19 / -23</td>
</tr>
<tr>
<td>Chromaticities with OSC sextupoles</td>
<td>-81 / 29*</td>
</tr>
<tr>
<td>\perp emittance, $\varepsilon_{SR}/2 = \varepsilon_x = \varepsilon_y$, rms</td>
<td>8.6 nm</td>
</tr>
<tr>
<td>Rms momentum spread, σ_p</td>
<td>1.29·10⁻⁴</td>
</tr>
<tr>
<td>SR damping times (ampl.), $\tau_s/ (\tau_x=\tau_y)$</td>
<td>1.5 / 1.4 s</td>
</tr>
<tr>
<td>Cooling ranges* (before OSC), n_{sx}/n_{so}</td>
<td>6.9 / 3.4</td>
</tr>
</tbody>
</table>

For hor. plane it is defined as $\sqrt{\varepsilon_{max}/\varepsilon_x}$. The 2nd order lengthening is neglected. Expected that in the hor. plane it will not be a problem after compensation with sextupoles. The 2nd order lengthening limits the vertical cooling range to $n_{sy} \approx 4$.

• Energy is reduced 150\rightarrow100 MeV to reduce ε, σ_p and undulator period and length

• Operation on coupling resonance reduces horizontal emittance and introduces vertical damping

• Tunes are chosen to maximize dynamic aperture limitation by OSC sextupoles

* Chromaticities need to be compensated to be $|\xi|\leq20$
Dynamic Aperture Limitation by Sextupoles of OSC Insert

- Introduce dimensionless variables
 \[\tilde{\theta} = \beta^2 \frac{\theta + \alpha x / \beta}{x_{0S}} , \quad \tilde{x} = \frac{\beta x}{x_{0S}} \quad \text{where} \quad x_{0S}^2 = \frac{pc}{e(SL)} \]

- Then the following transforms drive particle motion
 \[
 \left[\begin{array}{c}
 \tilde{x}' \\
 \tilde{\theta}'
 \end{array} \right] = \left[\begin{array}{cc}
 \cos \mu & \sin \mu \\
 -\sin \mu & \cos \mu
 \end{array} \right] \left[\begin{array}{c}
 \tilde{x} \\
 \tilde{\theta}
 \end{array} \right] , \quad \tilde{\theta}' = \tilde{\theta} + \frac{\tilde{x}^2}{x_{0S}^2}
 \]

- In vicinity of 3rd order resonance:
 \[\tilde{x}_b \approx 25 \left[\nu \right] \approx 1 \Rightarrow \varepsilon_b \approx \frac{625 x_{0S}^4}{\beta^3} \left(\left[\nu \right] \approx \frac{1}{3} \right)^2 \]

- Far from the resonance the stability boundary can be estimated from the phase space distortion =>
 \[\tilde{x}_b \approx 3 \Rightarrow \varepsilon_b \approx \frac{9 x_{0S}^4}{\beta^3} \]

- Transition happens at detuning \(\Delta \nu \approx 0.1 \)
Dynamic Aperture Limitation by Sextupoles of OSC Insert(2)

- Phase advance between OSC sextupoles $\Delta Q_x=0.451$
 - Although it is close to half integer it does not help with cancellation of sextupole effect

- Operation closer to half-integer resonance improves dynamic aperture
- For estimate we use
 \[
 \varepsilon_{bx} \approx \frac{9 x_{0S}^4}{\beta_x^3}, \quad x_{0S}^2 = \frac{p c}{e (SL)}
 \]
 \[\Rightarrow \varepsilon_{bx}=14 \, \mu m, \, n_{ax} \approx 40\] (compare to $\varepsilon_{x_{geom}}=20 \, \mu m$)
- Looks like aperture limitation by OSC sextupoles looks OK
- Orbit stability within sextupoles <100 μm
- Detailed simulations are required

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013
Undulators

- Undulator period was chosen so that $\lambda_{\theta=0}=2.2$ μm

<table>
<thead>
<tr>
<th>Radiation wavelength at zero angle</th>
<th>2.2 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undulator parameter, K</td>
<td>0.8</td>
</tr>
<tr>
<td>Undulator period</td>
<td>12.9 cm</td>
</tr>
<tr>
<td>Number of periods, m</td>
<td>6</td>
</tr>
<tr>
<td>Total undulator length, L_w</td>
<td>0.77 m</td>
</tr>
<tr>
<td>Peak magnetic field</td>
<td>664 G</td>
</tr>
<tr>
<td>Distance between centers of undulators</td>
<td>3.3 m</td>
</tr>
<tr>
<td>Energy loss per undulator per pass</td>
<td>22 meV</td>
</tr>
<tr>
<td>Average power per undulator for $N_e=10^6$</td>
<td>26 nW</td>
</tr>
<tr>
<td>Radiation size in 2nd undulator, HWHM</td>
<td>0.35 mm</td>
</tr>
</tbody>
</table>

Rms beam sizes in absence of OSC, $\sigma_x=0.25$ mm - in undulators
Cooling Rates

- Passive OSC increases the SR damping rates by about one order of magnitude
- Optical amplifier with 20 dB gain could increase the damping rate by factor of ~3
 - Factor of 3 will be lost due to smaller bandwidth
 - Detailed design is pending

Main parameters of passive OSC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>2.2 - 3.3 μm</td>
</tr>
<tr>
<td>Angular acceptance</td>
<td>4.1 mrad</td>
</tr>
<tr>
<td>Optics system radius</td>
<td>7 mm</td>
</tr>
<tr>
<td>Damp. rates ($\chi=y/s$)</td>
<td>6.5/7.6 s⁻¹</td>
</tr>
</tbody>
</table>
Focusing of Beam Radiation to OA and Kicker

- Two possibilities
 - For passive OSC: four lens system with complete suppression of depth of field
 - Two lens system (F=8 cm, radius - 3.5 mm)
 - Reasonable compromise between 4 major requirements
 - The spot size in OA to be sufficiently small: $r<60 \mu m$
 \Rightarrow diffraction limited size in OA: HWHM=12 μm or total size $r\approx30 \mu m$
 \Rightarrow size due to beam convergence/divergence at OA input/exit $\approx50 \mu m$
Other Limitations

- Touschek lifetime and multiple IBS limit the number of particles in the bunch, $N_e \sim 10^6$
- Scattering on the residual gas results in short lifetime in the conditions of small cooling acceptance
- Quantum effects play little role in the OSC cooling

Quantum Mechanical Treatment of Transit-Time Optical Stochastic Cooling of Muons

A. E. Charman1 and J. S. Wurtele1,2

1Department of Physics, U.C. Berkeley, Berkeley, CA 94720
2Center for Beam Physics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(Dated: April 9, 2009)

Quantum theory of Optical Stochastic Cooling

S. Heifets,
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

M. Zolotorev,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Conclusions

- Optical stochastic cooling looks as a promising technique for future hadron colliders
- Experimental study of OSC in Fermilab is in its initial phase
 - It is aimed to validate cooling principles and to demonstrate cooling with and without optical amplifier
 - Even in the absence of amplification (passive system, $G = 1$) the OSC damping exceeds SR damping by about an order of magnitude
- The beam intensity ranges from a single electron to the bunch population limited by operation at the optimum gain (10^8-10^9)
 - Single electron cooling - localization of electron wave function and essence of quantum mechanics
 - Quantum noise for passive cooling
 - Cooling at the optimal gain (ultimate cooling) gets us to otherwise hidden details of OSC, in particular, to signal suppression
Backup Slides
Basics of OSC – Radiation from Undulator

- Liénard-Wiechert potentials and E-field of moving charge in wave zone

\[
\begin{align*}
\varphi(r,t) &= \frac{e}{(R - \beta \cdot R)} \bigg|_{t=R/c} \\
A(r,t) &= \frac{ev}{(R - \beta \cdot R)} \bigg|_{t=R/c} \\
E(r,t) &= \frac{e}{c^2} \frac{(R - \beta \cdot R)(a \cdot R) - aR(R - \beta \cdot R)}{(R - \beta \cdot R)^3} \bigg|_{t=R/c}
\end{align*}
\]

where \(a \equiv \frac{dv}{dt} \)

- Radiation of ultra-relativistic particle is concentrated in \(1/\gamma \) angle
- Undulator parameter:

\[
K \equiv \gamma \theta_e = \frac{\lambda_{wgl} eB_0}{2\pi mc^2}
\]

- For \(K \geq 1 \) the radiation is mainly radiated into higher harmonics
Basics of OSC – Radiation Focusing to Kicker Undulator

- Modified Kirchhoff formula

\[E(r) = \frac{\omega}{2\pi ic} \int_{s} \frac{E(r') e^{i\omega|r-r'|}}{|r-r'|} ds' \]

\[\Rightarrow \quad E(r) = \frac{1}{2\pi ic} \int_{s} \frac{\omega(r')e^{i\omega|r-r'|}E(r')}{|r-r'|} ds' \]

- Effect of higher harmonics
 - Higher harmonics are normally located outside window of optical lens transparency and are absorbed in the lens material

Dependences of retarded time \((t_p)\) and \(E_x\) on time for helical undulator

- Only first harmonic is retained in the calculations presented below
Basics of OSC – Longitudinal Kick for $K<<1$

For $K<<1$ refocused radiation of pickup undulator has the same structure as radiation from kicker undulator. They are added coherently:

$$E = E_1 + E_2 e^{i\phi} \rightarrow 2 \cos\left(\frac{\phi}{2}\right) E_1 e^{i\phi/2}$$

⇒ Energy loss after passing 2 undulators

$$\Delta U \propto \left|E^2\right| = 4 \cos\left(\frac{\phi}{2}\right)^2 \left|E_1^2\right| = 2 \left(1 + \cos\phi\right) \left|E_1^2\right| = 2 \left(1 + \cos\left(kM_{56} \frac{\Delta p}{p}\right)\right) \left|E_1^2\right|$$

Large derivative of energy loss on momentum amplifies damping rates and creates a possibility to achieve damping without optical amplifier

♦ SR damping: $$\lambda_{\parallel, SR} \approx \frac{2\Delta U_{SR}}{pc} f_0$$

♦ OSC:

$$\lambda_{\parallel, OSC} \approx f_0 \frac{2\Delta U_{wgl}}{pc} \left(GkM_{56}\right)_{\frac{kM_{56}(\Delta p/p)_{\text{max}} = \pi}} \rightarrow f_0 \frac{2\Delta U_{wgl}}{pc} \left(\frac{G}{(\Delta p / p)_{\text{max}}}\right)$$

where G - optical amplifier gain, $(\Delta p / p)_{\text{max}}$ - cooling system acceptance

⇒ $$\lambda_{\parallel, OSC} \propto B^2 L \propto K^2 L$$ - but cooling efficiency drops with K increase above ~ 1
Basics of OSC – Longitudinal Kick for $K<<1$(continue)

- Radiation wavelength depends on θ as

$$\lambda = \frac{\lambda}{2\gamma^2} \left(1 + \gamma^2 \theta^2\right)$$

Limitation of system bandwidth by (1) optical amplifier band or (2) subtended angle reduce damping rate

$$\lambda_{||,SR} = \lambda_{||,SR0} F(\gamma \theta_m), \quad F(x) = 1 - \frac{1}{\left(1 + x^2\right)^3}$$

For narrow band: $\Delta U_{wgl} = \Delta U_{wgl0} \left(\frac{3\Delta \omega}{\omega}\right)$, $\frac{3\Delta \omega}{\omega} << 1$

where $\Delta U_{wgl0} = \frac{e^4 B^2 \gamma^2 L}{3m^2 c^4} \begin{cases} 1, & \text{Flat wiggler} \\ 2, & \text{Helical wiggler} \end{cases}$ the energy radiated in one undulator
Basics of OSC – Radiation from Flat Undulator

For arbitrary undulator parameter we have

\[
\Delta U_{OSC,F} = \frac{1}{2} \frac{4e^4 B_0^2 \gamma^2 L}{3m^2 c^4} GF_f \left(K, \gamma \theta_{\text{max}} \right) F_u \left(\kappa_u \right)
\]

\[
F_u \left(\kappa_u \right) = J_0 \left(\kappa_u \right) - J_1 \left(\kappa_u \right), \quad \kappa_u = K^2 / \left(4 \left(1 + K^2 / 2 \right) \right)
\]

Fitting results of numerical integration yields:

\[
F_h \left(K, \infty \right) \approx \frac{1}{1 + 1.07K^2 + 0.11K^3 + 0.36K^4}, \quad K \equiv \gamma \theta_e \leq 4
\]

Dependence of wavelength on \(\theta \):

\[
\lambda \approx \frac{\lambda_{wgl}}{2 \gamma^2} \left(1 + \gamma^2 \left(\theta^2 + \frac{\theta_e^2}{2} \right) \right)
\]

Flat undulator is “more effective” than the helical one

For the same \(K \) and \(\lambda_{wgl} \), flat undulator generates shorter wave lengths

For both cases of the flat and helical undulators and for fixed \(B \) a decrease of \(\lambda_{wgl} \) and, consequently, \(\lambda \) yields kick increase

- but wavelength is limited by both beam optics and light focusing
Basics of OSC – Correction of the Depth of Field

- It was implied above that the radiation coming out of the pickup undulator is focused on the particle during its trip through the kicker undulator.
 - It can be achieved with lens located at infinity

 \[
 \frac{1}{2F + \Delta s} + \frac{1}{2F - \Delta s} = \frac{1}{F} \quad \Rightarrow \quad \frac{1}{F - \Delta s^2 / 4F} = \frac{1}{F} \quad \Rightarrow \quad \frac{F}{\infty} \rightarrow \frac{1}{F} = \frac{1}{F}
 \]
 - but this arrangement cannot be used in practice
- A 3-lens telescope can address the problem within limited space

\[
\begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -F_1^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -F_2^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -F_1^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}
\]

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013