

Discussion on possible experiments in the ASTA Injector and highenergy beamline*

P. Piot for the ASTA team

Focused Workshop on Scientific Opportunities in IOTA, April 28-29, 2015 Fermilab

*sponsored by DOE contract #DE-AC02-07CH11359 to the Fermi Research Alliance LLC.

Outline & Motivations

- **Current setup:** injector and laser capability, "high-energy" beamline(s).
- Discussions on possible beamline additions (for WG3 to discuss)
- Classes of Possible Experiments (discussed at various venues):
 RE pulse
 - general beam dynamics
 - radiation sources
 - phase-space control & applications
 - advanced acceleration techniques

Beamline Configuration

- $1+\frac{1}{2}$ -cell DESY (axisymmetric coupler) gun,
- two SCRF booster cavities (CAV1, 2),
- Round-to-flat beam transformer (RFTB),
- Bunch compressor (BC1) + diagnostic section,
- later stage: active or passive linearizer (?)
- low energy user area (A.1 ?).

Cathode + Laser System

- Cs₂Te cathode,
- Yb-fiber/Nd:YLF laser,
- Q>5 nC possible.

81.25 MHz

1 mW

PP

commercial system from Calmar Lasers Inc.

fiber-laser

oscillator

(1.3 GHz)

81.25 MHz

10 mW

fiber

amplifier

81.25 MHz

1054 nm

pre-

amplifier

Laser temporal shaping

- Laser pulse transformlimited to ~3 ps (rms)
- Coarse shaping possible using α -BBO crystals

Asymmetric-emittance ("flat") beams

- $p_{\theta}(r, z > z_{sol}) = P_{\theta}(r, z = 0)$ $P_{\theta}(r, z=0) = eA_{\theta}(r, z=0)$ Injector includes RTFB cathode $E_{r}(r=0,z)$ transformer (skew quad) rf gun \bigcirc $B_{r}(r=0.z)$ "flat beam" from a Haser z_{sol} CAM-dominated beam. solenoidal lenses
- Flat beams w. similar 4D emit. as round beams.
- Compression of flat beam is possible.

workshop on experiment in IOTA, 04/28-29/15 Fermilab

 \mathcal{Z}

Bunch-compressor chicane

- Compression at low energy can be accomplished
 tradeoff btw emit. & peak current
- Dispersive selection using mask located in compressor
 shaping, energy bands, microbunches
- [J. C. T Thangaraj et al, LINAC14 (2014) Y.-M Shin, et al. IPAC14 (2014)]

Compressed flat beams

- generation of compressed flat beams
 - various charge,
 - flexible emittance ratios

TABLE II. Properties of the optimized flat beams under full compression.

Bunch charge (nC)	3.2	1.0	0.02
Energy (MeV)	36.1	35.6	36.9
$\varepsilon_{n,x}$ (µm)	107.5	50.3	4.36
$\varepsilon_{n,v}$ (µm)	0.41	0.20	0.016
Slice emittance at current peak (μ m)	0.54	0.28	0.015
Peak current (kA)	5.5	1.9	0.13
rms bunch length (mm)	0.32	0.19	0.066
Compression ratio	6.5	7.6	11.3
Peak current ratio	36.2	28.0	42.9

[J. Zhu, et al., PRSTAB (2014)]

workshop on experiment in IOTA, 04/28-29/15 Fermilab

Cryomodule-to-dump transfer line

2nd compressor (post ACC1)?

- challenging without a linearizer prior to the bunch compressor in injector
- spare parts identified
- Could some experiments benefit from it?

 η_{\star} (m)

Application of temporal laser shaping

- control of collective effects
 - control of CSR
 - wakefield
- optimal shapes for beamdriven acceleration concepts
 - coarse shaping can lead to shape that support enhanced transformer ratio

- twin (and more) bunches with variable spacing
 - excitation of single mode in accelerating structures,...
 - coherent-radiation

Application of flat beams

- acceleration in asymmetric structures
- test of micro-undulators
- mitigation of CSR in bunch compressors
- beam-beam kickers

[adapted from A. Garraud et al., U. Florida]

[C. R. Prokop NIMA (2013)]

incoming emittance ratio

 10^{2}

 10^{1}

10⁰ [_____

workshop on experiment in IOTA, 04/28-29/15 Fermilab

 10^{3}

Low-emittance bunches

- (See recent experiment P. Musumecci, PRSTAB 2012)
- small laser spot on photocathode lead to extremely small emittances (sub-10-nm)
- Field-emission with gated cathodes could enable the production of lowcharge bunches repeated at 1.3 GHz within 1 ms,
- Alternatively laser-triggered emission could produce low (a few electrons) short bunch (IOTA e- wave function measurement?)

workshop on experiment in IOTA, 04/28

Application of low-emittance beam to X-ray sources (planned)

- channeling radiation
 - low charge beam focused on a ~160 μm diamond Xtal
- novelty:
 - high brilliance ($\sim 10^{10}$),
 - combined with SCRF

[adapted from C. Brau et al. (2014), B. Blomberg FEL13 (2013)]

Summary

- Over the last two "user" workshops many experiments were discussed:
 - general beam dynamics, beam manipulations,
 - radiation source R&D,
 - advanced acceleration concept R&D
- Since then ASTA injector set to ~300 MeV

Open questions for WG3

- Focus should be on deploying capability unique to ASTA in support to high-quality experiments:
 - flat beams can support advanced acceleration (e.g. SBIR proposal by Radiabeam, DOE funding to NIU, ...),
 - longitudinal shaping (laser and mask methods). But what applications can they support?
 - BC2 possibility:
 - what are the benefits,
 - If so what would be the necessary auxiliary subsystems required (linearizer + dechirper?),
 - experimental area immediately downstream of BC2?
 - laser systems need?