
Data Management:
Prologue
Where is my data?
How do I access it?

Background
• The two large LHC VOs, ATLAS and CMS, own storage at many OSG sites

and use them as storage elements, or remotely accessible file systems.

• These SEs behave like - and are operated like - POSIX filesystems.

• For each POSIX command (cp, ls, mv, rm), there is an equivalent
command for the SE. For the SRM protocol, for example, srmcp, srmls,
srmmv, srmrm.

• The SE abstraction is very low level!

• Managing data is analogous to having a login to 50 clusters.

• Or copying files manually between your work desktop, laptop, phone,
and home desktop.

Background
• How is data handled in the SE paradigm?

• Access: Each SE has its own twist on data access. Either hardcode access rules locally (yuck!)
or come up with a standard site discovery mechanism (far less successful than hardcoding!).

• Movement: A service is given a set of files from endpoint A to endpoint B. The files are usable
once files are at endpoint B.

• Catalogue: Some central service tracks the location of each file.

• Catalogs must be kept in sync for this to work! No help from POSIX here! Either require
specialized storage (limiting!) systems or live with the mess.

• Data management: Rules engine verifies that all files are in the “correct” location according to
some set of rules. If not, make new copies with the movement service.

• Data lost? Site initiates a recovery procedure. In CMS, the site admin opens a ticket.

• It is assumed data loss is an exceptional event which does not happen frequently.

• If a file is not in the correct location, it can be considered an error.

Motivation

Opportunistic Computing is like giving away empty
airline seats; the plane was going to fly regardless.

Opportunistic Storage is like giving away real
estate.

(paraphrased from Mike Norman, SDSC)

Motivation
• Using the SE paradigm has been a colossal failure for opportunistic VOs.

• Systems for CMS and ATLAS are robust and efficient, but proven
impossible for others. Cost of management is too high and
opportunistic VOs are unable to command site admin time.

• Key to this failure is the underlying assumption in the SE paradigm that file
loss is an exceptional event.

• Again, “Storage is like real estate.”

• To be successful, opportunistic storage must treat file loss as a
everyday, expected occurrence.

• The lack of high-speed local storage significantly decreases the
usefulness of the OSG for FIFE.

Motivation:  
FIFE needs this

• Many FIFE workflows can exist blissfully with minimal data
management:

• “Never underestimate a condor_schedd with a 10Gbps
interface and a nice RAID.”

• Generally, the limit is when the average file transfer per job is
>1GB.

• Some workflows (“flux files”-based MC generation) need
multiple GB of input.

• If FIFE wants to use opportunistic OSG sites, they need a
solution!

Data Management in
OSG:

StashCache
Brian Bockelman

A Different Approach
• Caching: A file is downloaded locally to the cache from

an origin server on first access.

• On future accesses, the local copy is used.

• When more room needs to be made for access, “old”
files are removed (by some algorithm which decides
the definition of “old”).

• More resilient against failures, less work to do. Sites
can reclaim storage at any time (or other users can take
it!). Data “loss” is normal (loss == cache eviction).

Why Caching?
• Contrast with SEs:

• Access: All endpoints in infrastructure have same data
access method.

• Movement: If files are not local, they are moved on-
demand.

• Catalogue: All files are assumed to be at the “origin server”.
We do not need to track any other location information.

• Data management: Custodial copy of all files are at the
origin; no other explicit work is needed by VO.

Introducing StashCache
• Cache servers are placed at

several strategic cache
locations across the OSG.

• Caching infrastructure based
on SLAC Xrootd server &
xrootd protocol.

• Each VO has a origin server.

• Jobs utilize “nearby” cache,
for some definition of nearby.

OSG Data
Federation

OSG-XD
Source

OSG-Connect
Source

IF
Source

GLOW
Source

OSG
Redirector

Caching
Proxy

Caching
Proxy

Caching
Proxy

Caching
Proxy

Job
Job

Job

Download
Redirect

Discovery

StashCache - Goals

• Provide effective, high-performance caching for
working set sizes of 10GB-10TB.

• Require no special services or configuration for
sites to participate.

• Provide high-quality access methods that abstract
away underlying implementation.

StashCache - Data Access
• After user copies file to their VO’s origin server (i.e.,

through mounted /pnfs for Fermilab VOs), Stash provides
three data access methods:

• ‘cp’-like: Can invoke stashcp from job wrapper to
download files.

• HTCondor File Transfer: HTCondor orchestrates
transfer; list files needed in condor_submit file.

• POSIX-like: Job wrapper accesses StashCache as if it
were a mounted filesystem (limitations apply: uses
LD_PRELOAD).

Use Case:
Flux file distribution for Nova.
• Test distributing “flux files”; assume they are O(1GB)

and O(100) files.

• Each job reads 2 randomly-selected files from dataset.

• Jobs last several hours.

• Enough jobs are submitted so each file is read N
times.

• Use the POSIX-like mode; minimum read size is 64MB
to hide latency (file is buffered on worker node disk).

Evaluating StashCache for
Nova.

• “Violin plot” to right
shows distribution of
startup times for 128
jobs using local SE
(via aliencache)
versus local cache.

• Tests done by
Robert Illingworth
using actual Nova
framework

100

200

300

400

500

Aliencache - empty cache Aliencache Stash - 128 jobs - empty cache Stash - 128 jobs
Source

S
et

up
 ti

m
e

(s
)

NOVA MC jobs running at Omaha

Cache hit - comparable performance

Nova use case - next steps
• Currently waiting on integrating FNAL dCache into stash

as an origin server

• (tests were performed by copying flux files to a different
origin server).

• Would like to re-run tests tightly controlling the number of
concurrently-running jobs.

• Explore larger scales: StashCache system aims to get up
to 10,000 concurrent jobs.

• Currently tests were on order of 128 jobs.

StashCache Futures
• We will be opening up StashCache to more users throughout the

year.

• The real power in StashCache is the distributed hardware; as we
go forward, will be experimenting with additional access modes.
Current ideas:

• Export HTTP protocol for more familiar client tools.

• Integrate with the condor_cached (see Derek Weitzel’s
HTCondor Week 2015*) for space management.

• Use for distributing CVMFS repos. Would allow aliencache-
like performance without any site configuration or site services.

* http://research.cs.wisc.edu/htcondor/HTCondorWeek2015/presentations/WeitzelD_CacheDPres.pdf

http://research.cs.wisc.edu/htcondor/HTCondorWeek2015/presentations/WeitzelD_CacheDPres.pdf

Questions?

