
DATABASE APPLICATIONS:
BEST PRACTICES
Igor Mandrichenko
FIFE Workshop
6/1/2015

Portfolio
• Collaboration tools

• Logbook
• Shift Scheduler
• Project Organizer
• Speaker’s Bureau
• DES collaboration management databases

Portfolio
• IFBeam database

• Real time
• High availability
• Highly redundant (main DB server with 2 replicas,

mirrored disks on each - 6 copies of data)
• BluArc backups

• Conditions databases
• 2 flavors - simple (Minerva, MicroBooNe) and more

sophisticated (NOvA, DUNE)

3

Data access from the grid
• Direct access to databases from the grid does not scale

• Database servers do not have capability to handle and
manage high unorganized load created by the grid
clients

• Exposing database schema to the client is not always
necessary and usually is a bad idea

• Very old solution: put a web server between the client and
the database
• Instead of:

• select data from table1, table2 where .. and t=123 ..
• web method:

• http://server.fnal.gov/application/get_data?t=123

4

http://server.fnal.gov/application/get_data?t=123

Common application architecture

5

Benefits of web sever vs. database
• Abstraction

• Representation translation is done on the server
• Server hides details of actual database data representation

from the client
• Schema flexibility
• Server implementation can be changed without affecting the

client - as long as the interface stays the same
• Change of the underlying database product version or even

flavor
• Web protocol is connection- and state-less

• Higher flexibility in resource management
• Security

• Read-only web server is much safer and often does not need
any security restrictions

6

Benefits of hiding the database behind a
(redundant) web sever
• Load balancing
• Resource management

• Managing data servers is much easier than managing
clients

• Elasticity
• Add or remove underlying resources to meet the

changes in the demand, priorities
• High availability

• No downtime upgrades, including schema changes
• Upgrade some servers while others are running, then

switch
• Hardware failures, OS upgrades, etc.

7

Redundant Web Services Infrastructure
(RWSI)
• Server side

• scalable, expandable (we use VMs), high availability
environment to run web-based data access applications

• powerful resource management and monitoring
• Client side

• light weight HTTP data access C library
• based on libcurl

• sample Python code (trivial)
• Standard Internet protocols, formats, tools

• HTTP, CSV, REST
• Cache, Proxy

8

Common approach to application
development
• Separate data representation functionality from the rest of

the application into a web service
• Deploy the database (contact CCD)
• Use the Redundant Web Services Infrastructure to run one

or more instances of the web service
!

• (Very different) applications with web data access
• IFBeam DB - only web access

• real time data and off-line
• Conditions databases
• Logbook - XML API (read, post)

9

Another good practice: caching
• Caching reduces load on the data server by remembering

answers to common questions without necessarily
understanding them
!

• Well developed by the Internet industry
• Standard tools

• nginx, squid, etc.
!

• Caution:
• caching works only when requests are repeated within

sufficiently short time (cache lifetime should be longer)
• cache will remember old data even after the database is

updated (cache lifetime should be shorter)

10

Caching
• How to make caching work ?
!

• Use case: time dependent data (conditions data)
!

• Clients ask for data in time intervals
• get me data for times between t0 and t1
• the requests will never repeat if (t0,t1) pairs do not

repeat

11

Caching
• Solution: Round t0 down and t1 up to some “round” time

points, say to the nearest midnight, hour, run boundary, 15
minutes, etc.

• Example:
• instead of data?t0=12:05:17&t1=12:25:05
• do this: data?t0=12:00:00&t1=13:00:00

• Different requests become identical, cacheable
• data?t0=12:25:06&t1=12:47:02
• becomes data?t0=12:00:00&t1=13:00:00

• Careful: clients get more data than they asked for, more
data is sent over the network

12

Caching
• Client side caching
• If practical, combine many “small” requests into a bigger

one
• Instead of this:

• getData(run=100,subrun=1),
getData(run=100,subrun=2),
getData(run=100,subrun=3)

• Do this:
• getData(run=100)
• Then extract subruns

13

Caching
• Server side caching
• If URL-based web (application independent) caching is

impossible or impractical, use caching on the server
• Since data server translates DB representation to the

application representation, there may be some caching
opportunities there

14

What if I need a database application ?
• When designing a database, come talk to us

• We may have done this before
• We may already have the application for you

• Example: we have conditions databases for NOvA,
Minerva, giving them as is to MicroBooNe, DUNE
(LBNE)

• If you need access to IFBeam DB or need monitoring tool
based on it, we can help

• If you have a web application to deploy, we can help you
set up your own redundant web services environment or
run it for you

15

