
● This presentation is a recap of one we gave to DOE-
OHEP in March.
● Our most recent successes are therefore not included.

● This is a “meta-talk” -- I'm going to switch back and forth 
between explaining concepts and explaining explanations.

● Very little concrete feedback from DOE. We'll discuss this 
more at the end of the talk.
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MTA Overview I

• Facility Includes:
– Control area in Linac Gallery
– Underground experimental hall
– Surface building (cryogenics plant)
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MTA Overview II

• RF Capability linked to Fermilab Linac
– 805 MHz

• 12 MW RF power available
• RF switch, circulator and loads installed upstream

– Allows klystron operation/service independent of MTA 
hall configuration

– Provides clean RF signals for experimental data
• RF switch and 2 waveguide branches in hall provide 

support for 2 independent test stations

– 201 MHz
• 4.5 MW RF power available
• RF switch and load installed upstream

– Allows amplifier operation independent of the  MTA hall 
configuration

– Extensive diagnostics available for RF cavity 
characterization
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MTA Overview III
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• 400-MeV H- beamline and instrumentation
– Commissioned to multiple locations within hall

MTA



RF R&D: Introduction

• High Gradient Normal Conducting RF (NCRF) R&D 
– Program at the MTA focuses on:

• In-depth understanding of the physics of RF breakdown 
• Design requirements for operating cavities in strong magnetic fields

– Surface preparation techniques that can significantly benefit overall NCRF 
performance (with and without B-field)

– The use of high pressure gas to suppress RF breakdown
…including studies of the beam interaction with the gaseous medium

– The development of compact dielectric-loaded RF structures

• R&D of RF in a magnetic field also benefits
– Application of RF photocathode guns, etc.
– Conditioning of fusion reactors
– Novel detector technologies

– Program Goals under MAP a NCRF cavities with gradients 
of:

25 MV/m @ 805 MHz and 3 T

16 MV/m @ 201 MHz and 3 T
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RF R&D:  Key Accomplishments

• Novel high gradient NCRF cavities
– Development of RF cavities with conventional open beam irises terminated by 

beryllium windows a higher shunt Impedance
a lower RF power

– Development of beryllium windows
• Thin and pre-curved beryllium windows for 805 and 201 MHz cavities 

• Design, fabrication and testing of a range of NCRF cavities 
– Vacuum cavities utilizing SCRF surface preparation techniques

• Able to achieve full power operation with no preliminary processing

– 805 MHz pillbox cavities 
• Enabling detailed validation of physics models of RF breakdown

– 201 MHz Cavity Prototype for the International Muon Ionization Cooling Experiment 
(MICE)

• Operational testing for the demonstration of ionization cooling

– HPRF cavities
• Beam tests to validate beam-induced plasma formation, mitigation and impacts
• Validation of dielectric-loaded cavity concepts
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Why Should This Be Of Interest to OHEP?

Although SCRF has been a major R&D focus of 
the field…
• Normal conducting RF remains a major 

component of accelerator design
• The accomplishments noted here enhance 

NCRF capabilities
– More robust
– Higher gradient
– An expanded range of potential applications of 

these structures
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RF R&D:  Thrusts Beyond MAP

• Two major thrusts of NCRF R&D are proposed 
for continuation within the GARD portfolio:
– Vacuum RF Studies using the 805 MHz “Modular” 

Cavity 
• Understand key features of our model of RF breakdown 

and damage
• Synergistic with other high gradient R&D

– High Pressure RF Studies
• Novel applications of beam acceleration
• RF energy storage systems
• Set the stage for new detector technologies relevant to 

the neutrino program
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RF R&D:  Vacuum Cavity Program

Fowler-Nordheim current may be focused by strong B-fields into 
beamlets, leading to cyclic fatigue, breakdown.
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D. Stratakis et al. NIMA 620 (2010) 147-
154.The experimental basis for this model is presented on the following slide.



RF R&D:  Vacuum Cavity Program
Observed cavity behavior fits our model of breakdown in strong 
magnetic fields.
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The 805 MHz “Modular Cavity” design 
addresses these issues directly.
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Surface E-field at 
couplers is 5x lower than 

at cavity axis.

Old 805 MHz pillbox

Modular cavity

Multipacting is 
optimized over a range 

of B-field values.

B = 0 Tesla

B = 3 Tesla

End walls easily 
removed for inspection,

reconfiguration, 
materials studies.

Not shown: Extensive instrumentation (e.g. Faraday cup), cooling circuits. Improved DAQ.



RF R&D:  Modular Cavity Program
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Experimental program underway now!
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Verifying this model requires 2-3 years of measurements with the modular 
cavity, extending ~1-1.5 years beyond end of MAP support.



RF R&D:  Modular Cavity Program

Experimental Program and Status

1. Gradient vs. B studies with copper end walls

2. Copper surface “lifetime” analysis

3. Gradient vs. B studies with beryllium end walls

4. Studies with beam (time permitting)
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The cavity is running now in the MTA, in parallel with the MICE 
effort. Preliminary results will be shown at IPAC in a contributed
oral presentation.
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RF R&D:  Modular Cavity Program

The modular cavity program is critical for the successful 
completion of two PhD theses.
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Peter Lane (IIT) on the use of 
acoustic sensors for spark 

localization in cavities
Alexey Kochemirovskiy (U. Chicago) on 
RF breakdown in strong magnetic fields



RF R&D:  Future Thrusts
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• Opportunities for ADMX
– Axion-to-photon conversion detection

– Cold, normal-conducting RF 
cavities operating in 
strong magnetic fields

– Dialogue with ADMX 
experiment about 
potential for 
collaboration
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High-Pressure Gas-Filled RF Cavity Program
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RF R&D:  Unique Features of 
Gas-Filled RF Cavities

• High-pressure GH2 can suppress RF breakdown
– Eliminates gradient sensitivity to B-field (60 MV/m irrespective of B)

• Fundamental Question: 
“What happens when an intense beam passes through a gas-filled cavity?”
– Beam studies at the MTA  a beam-induced plasma impact on gradient

• M. Chung et al., PRL 111, 184802, 2013 
• Quantitative theory validated by measurement of RF energy absorption by plasma 

using H2(D2) gas with an electronegative dopant

– Current focus a beam-plasma interaction 
• Charge neutralization compensation of beam space charge

– Compact high-gradient RF cavities
• Dielectric-loaded cavities enable significant size decrease
• Breakdown on dielectric surfaces mitigated by high-pressure gas

a HPRF technology has significant potential for new applications
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RF R&D:  High-Pressure Gas-Filled Cavities
How does gas interact with intense beam in RF fields?

Observed RF amplitude in the HPRF test cell

400 MeVMTA beam

Apparatus of MTA beam test

E0 = 50 MV/m Accomplishments:
• Experimentally verified RF power loading 

model due to beam-induced plasma 
• Demonstrated improvement by addition of an 

electronegative gas dopant: Dry air (DA) & SF6

• Results published in: 
       PRL 111, 184802, 2013

Group photo of HPRF team taken in the MTA exp hall

DA: Dry air
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Beam
~ 1012 
cm-3

Neutral gas
~ 1021 cm-3

Ionization process

Plasma chemistry

Space charge

Plasma
~ 1015 
cm-3

WARP simulation in a gas channel
Beam (red) & Plasma (green); 
Model plasma-induced beam 
oscillation
2 Ph.D students currently participating 
in modeling effort

Plasma-induced fields
(Evaluate corrective effect 
  in plasma simulation)

RF R&D:  High-Pressure Gas-Filled Cavities
Physics of Gas-Filled RF cavity a Interactions among three elements
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Plasma chemistry
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[James's movie goes here.]



RF R&D: Dielectric-Loaded HPRF Cavities
Compact High Gradient RF Cavity

• Insert dielectric material in RF cavities to shrink the radial size
• Surface breakdown is suppressed by inert gas
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Dielectric strength of Al2O3 (99.8%)

Maximum surface RF field 14 MV/m
≈ Dielectric strength of Al2O3

Breakdown
limit of N2 gas at low pressure

▵ This measurement

 ▵ 99.5

Measurement of maximum surface gradient in
an Al2O3 (Alumina) loaded gas-filled RF test cell
versus gas (N2) pressure

Next step: Beam tests targeted for FY16 & FY17
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RF R&D: Future Research Thrusts

• Compact RF energy storage cell (SC) 
– Beam loading compensation 

for intense beams 
– Dielectric-loaded a 

high-density energy storage
– High pressure gas stabilizes 

against breakdown
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RF energy 
storage cell

Accelerator cavity

Coupling cavity

Beam

R r

Empty (vacuum)
storage cell

Gas and ceramic
filled storage cell

RF Energy Storage Cell Concept

ARES Cavity 
System Concept
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RF R&D: Future Research Thrusts
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x-plane

y-plane

Hadron beam@DUNE beam

Gas-filled RF resonator strip

• Hadron Monitor Technology
–MW-Beam facilities:  Require beam monitors with improved radiation 

resistance
• Neutrino Sources:  DUNE, T2K, LBNO 

• Spallation Neutron Sources:  SNS, ESS, CSNS

–Gas-filled RF Resonator Hodoscope 
• Offers radiation robust technology

• Relative permittivity shift in resonator is 
proportional to plasma density produced by 
a hadron beam
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Summary

• Normal Conducting RF remains an important 
element of the accelerator R&D portfolio

• The infrastructure in the MuCool Test Area at 
Fermilab provides unique capabilities for 
advancing NCRF capabilities
– Accelerator applications
– Novel detector applications

• The proposed program offers significant 
potential gains for a relatively modest 
investment
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That concludes the talk we gave. Now a few 
parting thoughts:

• Facility support for MTA is included in FNAL 
Accelerator Division's FWP. This is great 
news!

• We made a strong case, but times are tough. 
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