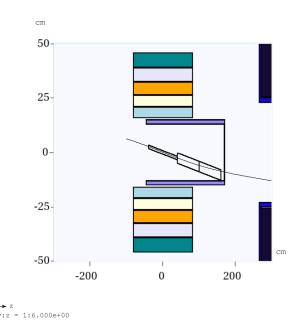
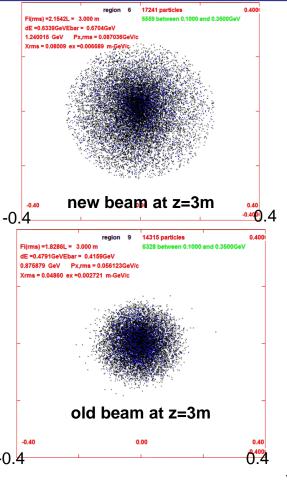


Beam Emittance and Energy Spectra for Hg and C Targets

J. Scott Berg
Brookhaven National Laboratory
MAP 2015 Spring Collaboration Meeting
May 19, 2015

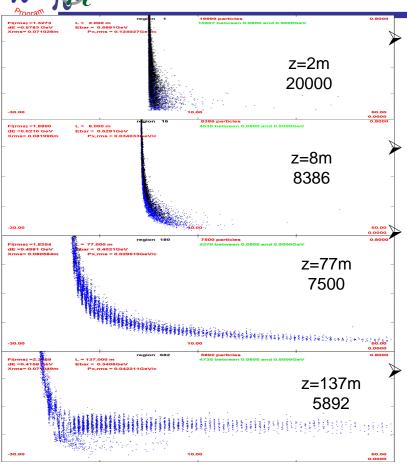
- Neuffer's talk at the MAP 2014 Winter Meeting, Dec. 4, 2014 (next 3 slides)
- Compared results from 8 GeV beam on Hg target to 6.75 GeV beam on C target
- C target had larger emittance by over a factor of 2
- Large increase in loss in first 6 m
- Performance reduction by about a factor of 2





Use old FE with new initial beam

- > New beam has too large initial size and divergence
 - initial transverse emittance >2X larger
 - $0.0027 \rightarrow 0.0067 \text{ m-GeV/c}$
 - ~half of initial beam lost in <6m



First simulations results

~60% of initial particles are lost in first 6m

previous front end lost ~20%

Beam starts out very large

- previous much smaller in
- front end simulations

μ/p reduced by factor ~ 2

- → ~0.0545 μ¹/p
- **-** ~0.042 μ⁻/p
 - μ- less than μ+

Not fully reoptimized for new initial beam

6.75 GeV p/ C target – First Look

- > Much worse than previous 8 GeV p / Hg target
- \gt 6.75 (~25% less), Hg \rightarrow C ...
 - but initial beam has very large phase space
- > Causes for early losses ???
 - Long C target not a good match to short taper ?
 - target should be within lens center ...
 - "Beam dump" after target blows up π beam ??
- > Bugs, errors?
 - Changes in Mars production code ??
 - normalization error ??
 - initialization errors
 - starts from z=2m rather than z=0
- After initial factor of 2 loss, very similar to old front end case
 - not yet reoptimized
- > To investigate/debug/reoptimize ...

13

Scope of my Studies

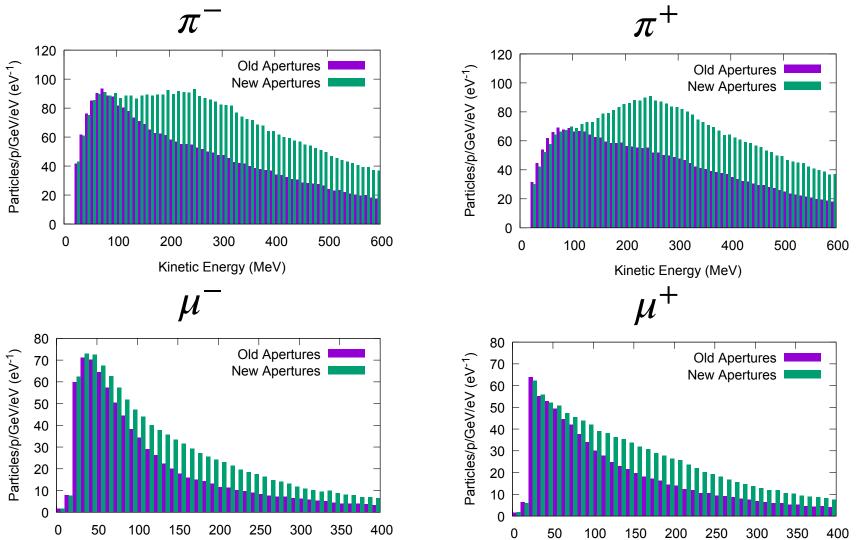
- Determine reasons for the behavior that Neuffer saw
- Better understand behavior in front end
- Produce distributions, equivalent in some sense to what Neuffer worked with, that address any problems in the originals
- Parameters for optimized (X. Ding) target designs
 - Target in 20 T field, tapering down to 2 T in just under
 5 m
 - Hg: 8 GeV beam
 - C: 6.5 GeV beam, 65 mrad tilt, no dump

Effect of Apertures

- Old target apertures
 - Mercury: square root taper aperture, starting at 7.5 cm at z = 0.375 m, growing to 30 cm at $z \approx 19$ m
 - Carbon: 13 cm aperture to z = 1.7 m, then 23 cm downstream
- Compare: maximum possible apertures near target for 20 T: 13 cm to z = 85 cm, then 23 cm downstream
- Compare distributions at 3 m to results with old apertures

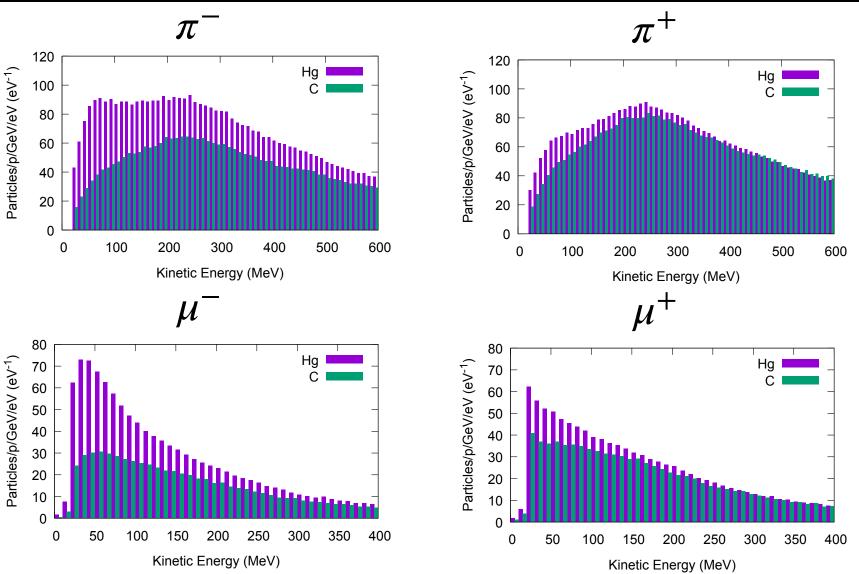
Effect of Apertures

- Emittances are larger, and are identical for Hg and C: emittances determined by apertures!
 - Normalized canonical emittances in mm
 - Large sign is sort of helicity
 - Difference in emittances is angular momentum


	μ^- +	μ^-	μ^+ +	μ^+	π^-+	π^-	π^++	π^+-
Hg old	30.7	13.4	35.2	15.1	21.0	14.4	21.9	15.1
Hg new	60.2	17.5	66.6	18.8	62.8	14.6	64.8	14.8
C old	51.5	22.1	52.7	23.9	36.5	26.0	36.6	27.4
C new	60.7	18.5	64.5	19.4	63.8	15.4	66.1	15.6

• Spectrum: widening apertures gives more particles at higher energy

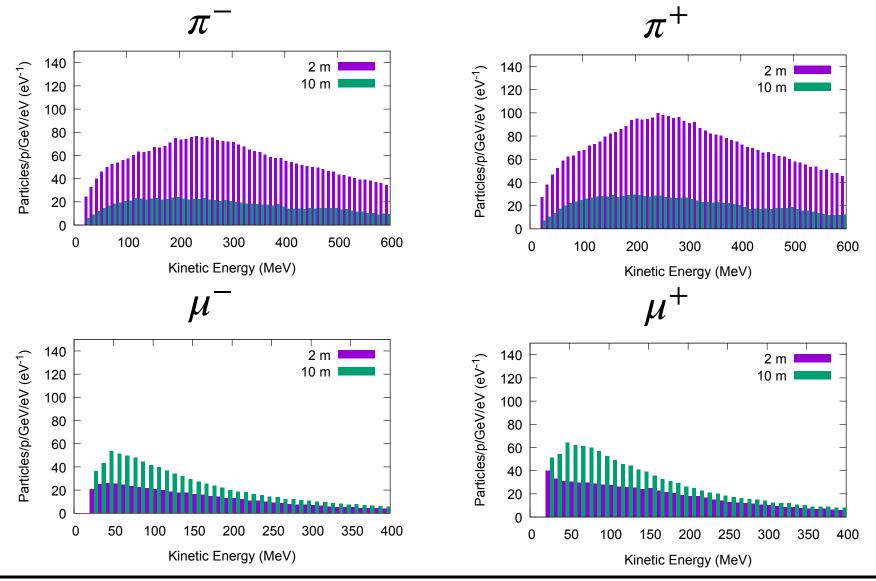
Hg at 3 m


Kinetic Energy (MeV)

Kinetic Energy (MeV)

Hg vs. C at 3 m

Hg vs. C at 3 m



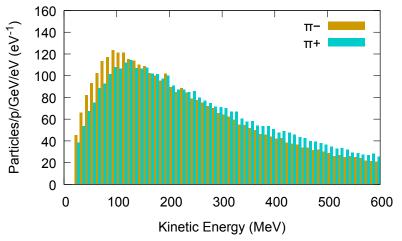
- Hg production per MW always higher than C
- Distributions (per MW!) get very similar at high energy, especially for positive charges
- Pion production peak at 250 MeV shows up in Hg as well as C
 - This peak may be related to geometry: higher fields may move this to higher energy
- C and Hg will require different NBPR
 - Note that NBPR will function differently for both signs (moreso in Hg): must be a compormise, designed simultaneously for both signs

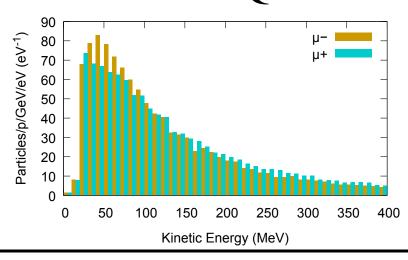
Spectrum vs. Distance (C)

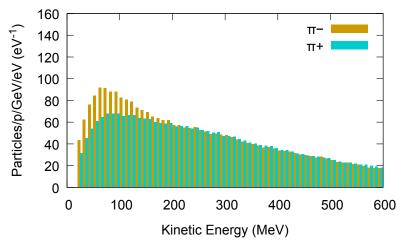
Spectrum vs. Distance

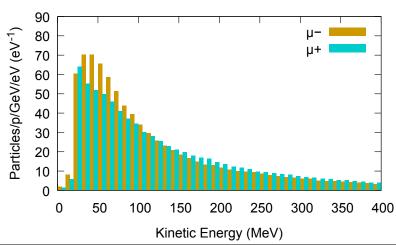
- Going down to 10 m, many more pions lost than muons created
- Peak at 250 MeV goes away
- Conclusion: many pions (and maybe some decay muons) lost on apertures
- Transmission would be improved by higher fields downstream
 - Consistent with Hisham's results
 - Spectrum would be weighted toward higher energy

IQGSM


- IQGSM gives a "choice of inclusive and exclusive event generators at nuclear inelastic interactions"
- IQGSM=0: exclusive CEM (cascade exciton model?) for E < 3 GeV, MARS inclusive for E > 5 GeV, LAQGSM for some special cases. Old MARS default.
- IQGSM=1: CEM for E < 0.3 GeV, LAQGSM for 0.5 GeV < E < 8 GeV, MARS inclusive for E > 10 GeV. New MARS default.


Distributions for Hg, IQGSM


13-Jan-2015 IQGSM=0


13-Jan-2015 IQGSM=0

13-Jan-2015 IQGSM=1

13-Jan-2015 IQGSM=1

IQGSM

- Significant performance hit for IQGSM=1 vs. IQGSM=0
- Energy spectrum also changes
- Emittance doesn't change
- C runs were all with IQGSM=1, earlier Hg were IQGSM=0

Conclusions

- I believe we more or less understand why David saw what he saw
- There were production differences due to differences in the nuclear inelastic model used (IQGSM)
- Emittances are determined primarily by apertures; Hg and C are the same
- High energy portion of spectrum clipped by apertures
- Spectrum shape differs for different signs

Conclusions

- Positive production similar for Hg and C
- Negative production differs significantly at low energy ($< 150 \text{ MeV for } \mu^-$)
 - Optimal NBPR will be different for Hg and C
- Higher fields downstream would increase number of captured particles, but likely raise energy of spectrum
- Hints that some early absorber may be beneficial, increasing lower-energy flux
 - In old days we had a "pre-cooler"
 - These results hint at a benefit from an "absorber horn"

Conclusions

• Finally: thanks to X. Ding for lots and lots of "ok, now run this configuration" MARS runs, which he completed very efficiently

Next Steps

- What does NBPR optimized for these distributions look like?
 - What portion of the distribution does it use?
 - What is the best compromise for both signs?
 - Is this different for collider and ν factory optimization?
 - Is there a significant difference for C and Hg?
- How does chicane change things?
- How does raising the field change things?
- Would an early absorber help?