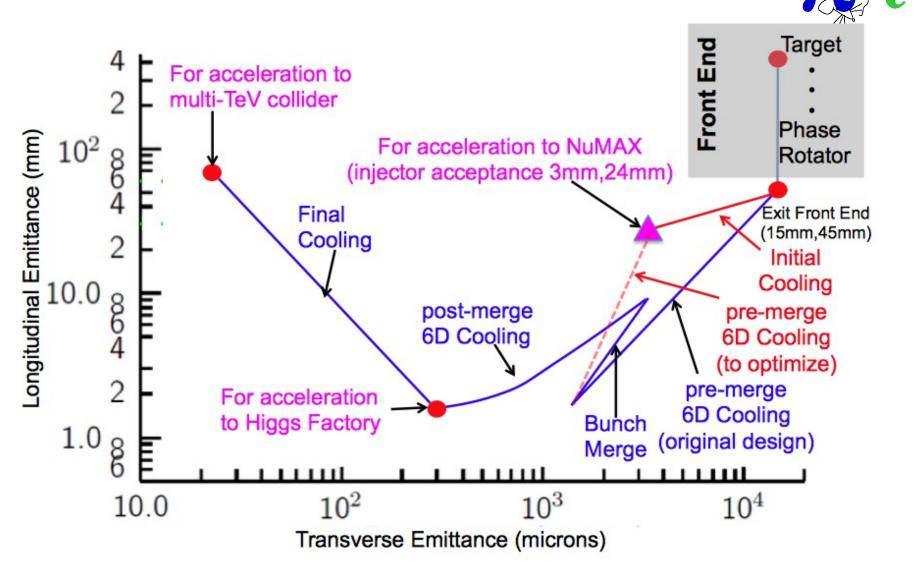

MICE Status and Plans

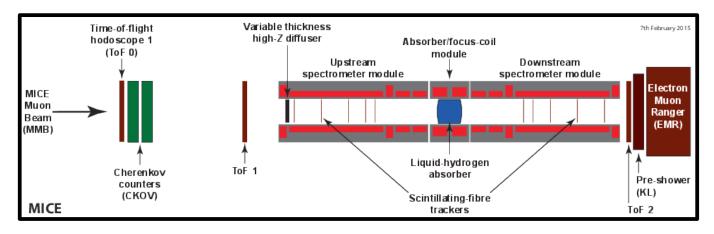
C. T. Rogers, on behalf of the MICE collaboration ASTeC Intense Beams Group Rutherford Appleton Laboratory

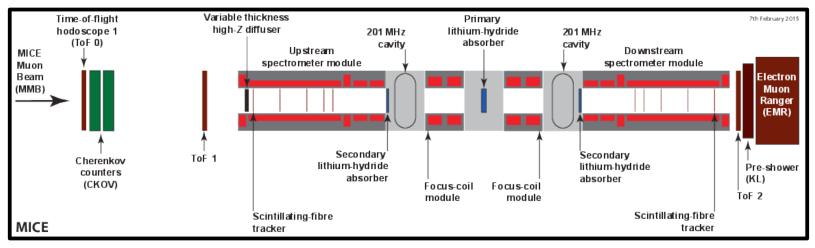

- Reminder of purpose and design of MICE
- Status of diagnostics

Overview

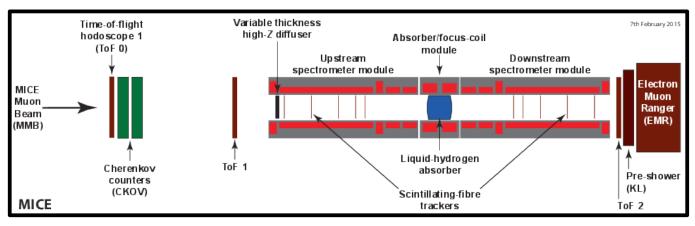
- Status of magnets
- Plans for operations
- Analysis of data
- Route to full demonstration of ionisation cooling

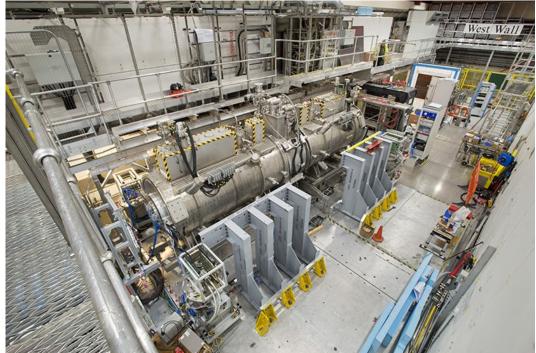
Muon Accelerators


MICE

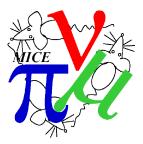


- 4D (transverse) cooling achieved by ionisation energy loss Absorber removes momentum in all directions RF cavity replaces momentum only in longitudinal direction End up with beam that is more straight
- Stochastic effects ruin cooling
 - Multiple Coulomb Scattering increases transverse phase space volume
 - Energy straggling increases longitudinal phase space volume


MICE – Ionisation Cooling PoP

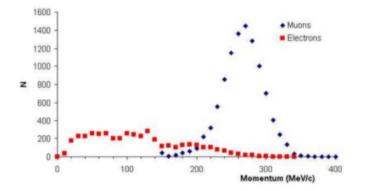


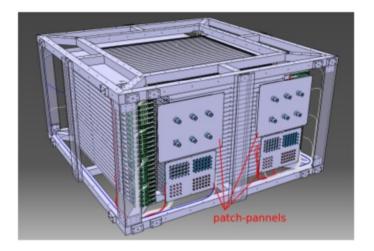
MICE Aims



Trackers

- Muons pass through scintillating fibre planes across solenoid
 - Fit a helix to the particle trajectories to reconstuct momentum
 - Principle detector for phase space reconstruction
- Tracker hardware is installed in spectrometer solenoids
- Successfully read out tracker electronics in the hall in January
- Ongoing work in cabling, readout, unpacking and reconstruction
- Talk by Ed Overton on Thursday

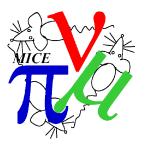

Pupose of the EMR in MICE:

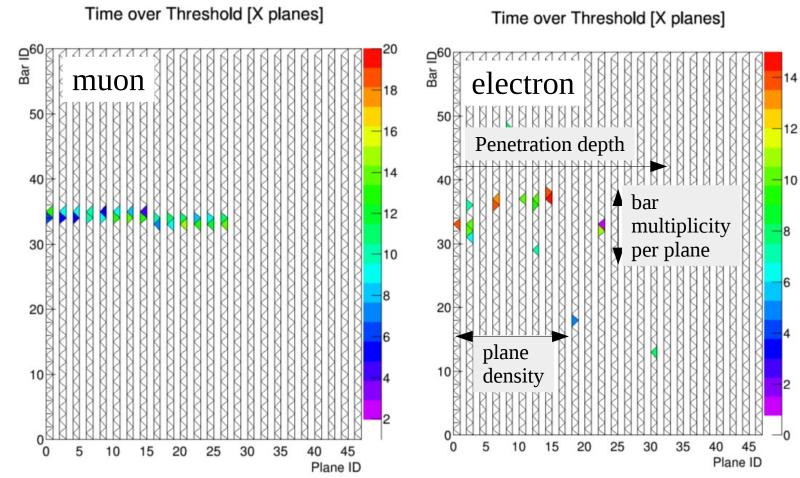

EMR

- Reject the muons that decayed inside the cooling channel and their decay products
- Redundant measurements of the trajectories and momenta

The EMR is fully active scintillator tracker calorimeter

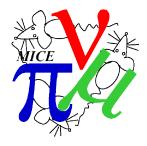
- 48 planes of 59 triangular scintillator bars
- Readout by multi-anode and single-anode PMTs

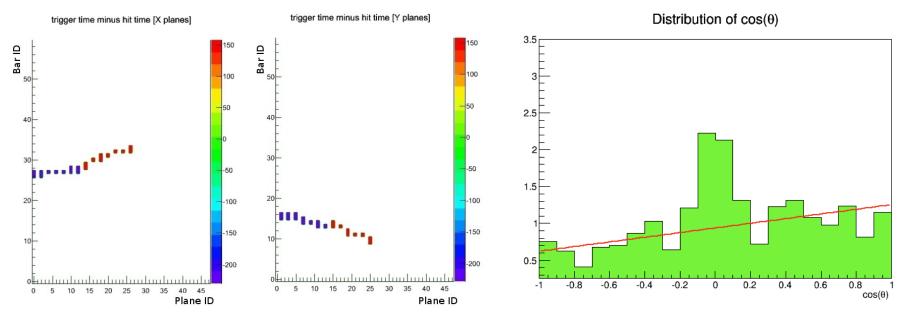




Francois Drielsma et al.

Particle Characterisation

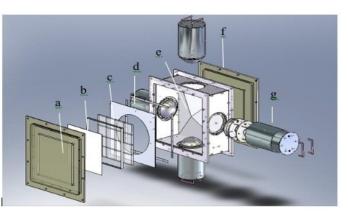




Francois Drielsma et al.

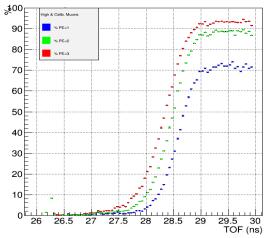
- EMR commissioned and calibrated
 - Paper in preparation

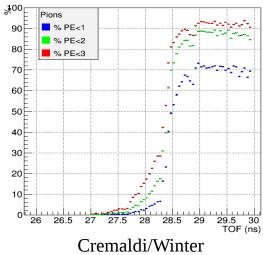
Beam Polarisation

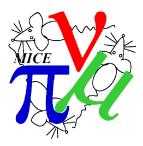


Sophie Middleton et al.

- Beam polarisation can affect positron impurities downstream
- May be possible to measure beam depolarisation due to material
- Calculate angular distribution of decay positrons in EMR
 - Deduce beam polarisation


Cerenkov

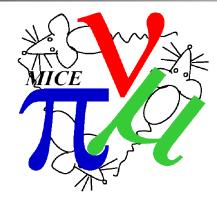

 $Muons^{\,\rm CkovA:\,\%\,PE\,vs\,TOF}$ High & Calib, Muons 90 % PE<1 ÷ 👡 % PE<2 - 1 80 % PE<3 -70 F . 60 - -50 - -40 • --30 20 10E PETTIL 0 I I I I 1 1.1.1.1 1 1 1 1 1 29.5 30 TOF (ns) 26 26.5 27 27.5 28 28.5 29 Pions CkovA: % PE vs TOF ^{≉00}E Pions 90F % PE<1 % PE<2</p> 80F % PE<3</p> 70 × ... 60E 50F 40F 2 . × **30**E -20E **.**... ÷ 10 • • 0¹26 26.5 27 27.5 28 28.5 29 29 29.5 30 TOF (ns)





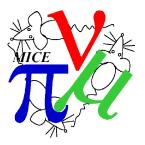
Pions CkovB: % PE vs TOF

DAQ trigger system

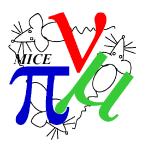


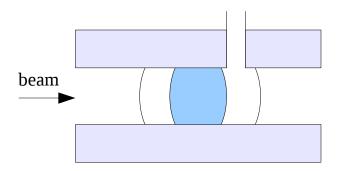
New trigger based on CAEN V1495 FPGA

- Replaces maze of wiring
- More functionality
- Less fragile


Now accepted as production trigger

Magnets

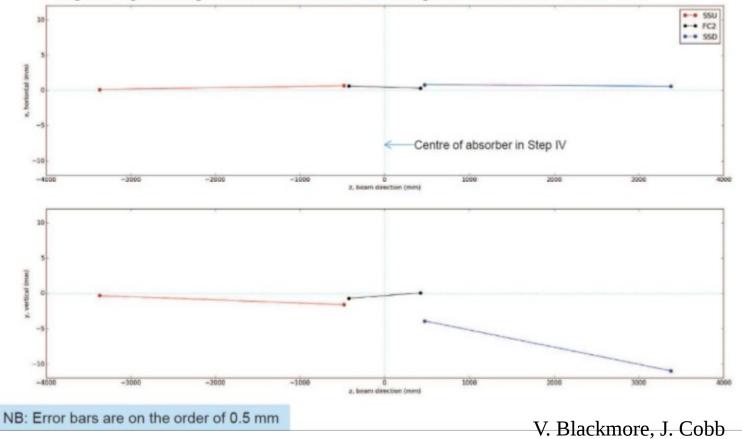

Spectrometer Solenoid



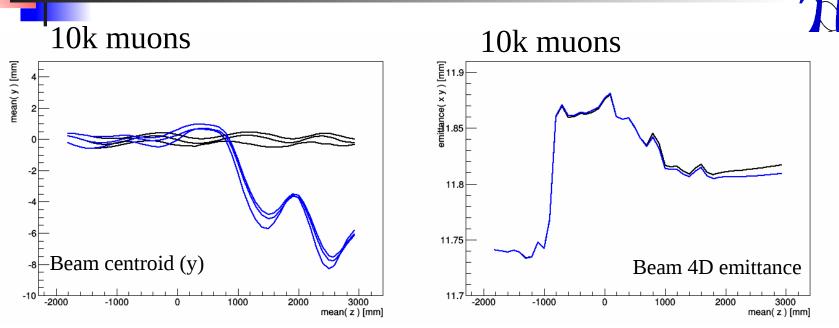
- Both spectrometer solenoids are on the beamline
- Solenoid refurb was completed following spectrometers transport to RAL
- Refurb on helium and vacuum system
- Compressor installation
- Ongoing work on cryocoolers
- Small leak on bellows

Absorber and Focus Coil

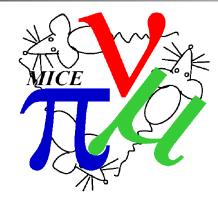
- FC2 is on the beamline
- FC1 has now been accepted by the collaboration
 - Achieved current is lower than design current
 - But required current is lower due to lattice revisions
- Focus coil power supply glitches
 - Detecting false quenches; investigation ongoing
- Readiness review for IH2 operation in January 2015
 - Relief-line for IH2 safety window not large enough diameter
 - Requested further testing of IH2 safety windows
 - Step IV will start with LiH while IH2 team review options



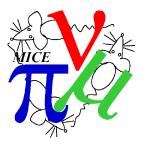
Magnet Mapping

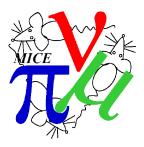

(Preliminary) Results

Magnets aligned along mechanical axis. Lines show magnetic axis of SSU, FC2 and SSD.


Additional concern about flange alignment to bore

Effect on Beam (Preliminary)


- Now track sample of particles through the cooling channel
 - All magnets powered
 - Random seed = initial emittance
- BLACK: magnets with perfect alignment
- BLUE: magnets with measured alignment
- Plan to "bolt and be damned"

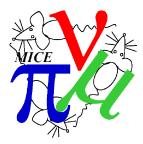


Operations Status

- Shifts
 - In normal running mode, data taking will be 24/7
 - To be included on publications, a shift quota must be fulfilled
 - 3 x 5 shift blocks, subject to confirmation
 - Shifters need to do some training and observe two shifts
- On-call/experts
 - Subsystems will provide on-call and system experts
- Few weekends data taking in March/April
 - Shake down readout and debugging controls systems
 - Beamline pre-commissioning; try a few newly optimised settings
 - Excercise the readout \rightarrow data movement \rightarrow reconstruction data flow
- Talk by Milorad Popovic on Thursday

Plan for User Run 2015/01

- Constraints
 - Magnet training has priority over data taking
 - May take the entire user run
 - 1 shift per night during first part of the user run (01a)
 - 3 shifts per day during second part of the user run (01b)
- Two outline run plans prepared
 - Baseline scenario
 - Pessimistic scenario
- Priorities:
 - Commission the tracker
 - Check integrated detector resolution/efficiency
 - Beam-based measurement of detector and magnet alignment
 - MICE muon beamline to MICE cooling channel matching
 - Demonstrate cooling channel optics
- Initially no absorber
- Talk by Paul Soler


Optimistic run plan

NICE	
The second secon	ES CONTRACTOR

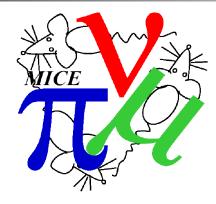
	Number		Shifts			
Task	of Shifts	Magnets	Per Day	ISIS	Start Date	End Date
TOF Calibration and Ckov Commissioning	2	SS	1	01a	02/06/15	04/06/15
Tracker Hardware Commissioning	6	SS	1	01a	04/06/15	10/06/15
Tracker Validation	2	SS	1	01a	10/06/15	12/06/15
Beamline Pre-commissioning	4	SS	1	01a	12/06/15	16/06/15
EMR Commissioning 1	1	SS	1	01a	16/06/15	17/06/15
ISIS Maintenance Day	0	FC	0	Maintenance	17/06/15	18/06/15
EMR Commissioning 2	3	FC	1	01a	18/06/15	21/06/15
EMR Commissioning 3	2	СТ	1	01a	21/06/15	23/06/15
Complete magnet training	0	СТ	0	01a	23/06/15	25/06/15
Tracker External Alignment	1	Done	1	01a	25/06/15	26/06/15
Alignment to Other Detectors	1	Done	1	01a	26/06/15	27/06/15
Beam-Based Alignment 1	7	Done	1	01a	27/06/15	04/07/15
				Machine		
ISIS Machine Physics	0	Done	0	Physics	04/07/15	14/07/15
Beam-Based Alignment 2	2	Done	3	01b	14/07/15	14/07/15
Validation of Track Matching	1	Done	3	01b	14/07/15	15/07/15
Validation of Particle Identification	2	Done	3	01b	15/07/15	15/07/15
Beamline Commissioning	15	Done	3	01b	15/07/15	20/07/15
Optics Validation	21	Done	3	01b	20/07/15	27/07/15

- Blue external constraint
- Red ran out of time
- 9 shifts required to complete commissioning after 01b

Pessimistic run plan

	Number		Shifts			
Task	of Shifts	Magnets	Per Day	ISIS	Start Date	End Date
TOF Calibration and Ckov Commissioning	3	SS	1	01a	02/06/15	05/06/15
Tracker Hardware Commissioning 1	12	SS	1	01a	05/06/15	17/06/15
ISIS Maintenance Day	0	SS	0	Maintenance	17/06/15	18/06/15
Tracker Hardware Commissioning 2	3	SS	1	01a	18/06/15	21/06/15
Tracker Validation 1	4	SS	1	01a	21/06/15	25/06/15
Tracker Validation 2	5	FC	1	01a	25/06/15	30/06/15
Beamline Pre-commissioning 1	4	FC	1	01a	30/06/15	04/07/15
				Machine		
ISIS Machine Physics	0	СТ	0	Physics	04/07/15	14/07/15
Beamline Pre-commissioning 2	2	СТ	0.75	01b	14/07/15	16/07/15
EMR Commissioning	9	СТ	0.75	01b	16/07/15	28/07/15

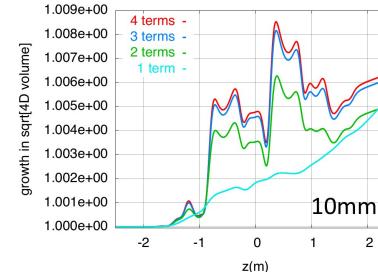
- Blue external constraint
- Red ran out of time
- 68 shifts still required to complete commissioning after 01b

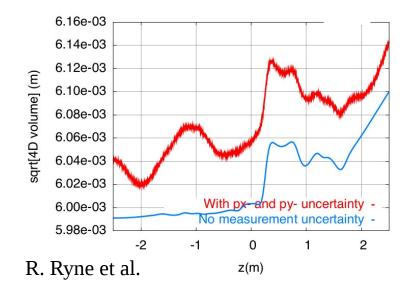

Plan for subsequent user runs

User Period	Run Type	Absorber	Focus Coil Mode	Run-time (days)	Total ((days)
2015-02	Physics	Empty	Solenoid		15	
	LiH Install				8	
	Physics	LiH	Solenoid		15	38
2015-03	Calib/Setup				7	
	Physics	Empty	Flip		15	
	LiH Install				8	
	Physics	LiH	Flip		15	45
2015-04	Calib/Setup				7	
	Physics	IH2	Flip		18	
	Physics	IH2	Solenoid		18	43
						126

- Lithium Hydride will be installed before liquid Hydrogen
 - Extra 6 days for LiH install in each run eats into our contingency
- Subject to progress in 2015-01

Analysis and Optics

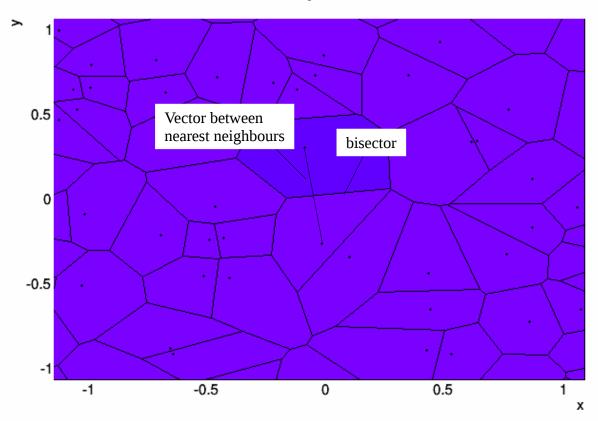


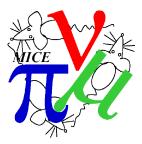


Effect of Non-Linear Dynamics

2

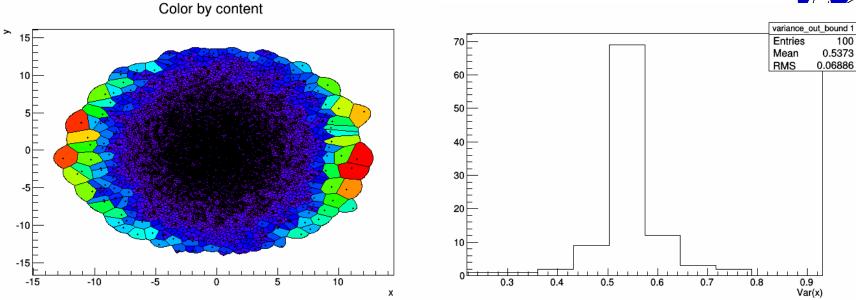
- Non-linear emittance growth can ruin the ionisation cooling effect
 - Appears to arise due to high-order terms in solenoidal field expansion
- Mismatch makes problem worse


Beam weighting


- Beam selection samples the beam events to try to find a sample of beam events that match some desired distribution
 - Try to select events in under populated regions
- Beam weighting applies statistical weights to events
 - Events in under-populated regions we count more than once
 - Events in over-populated regions we count less than once
 - We are allowed to apply fractional weights to these events
- Beam weighting algorithm
 - Decide which regions are over-populated or under-populated
 - Apply an appropriate statistical weighting
- How do we decide which regions are over-populated?
 - In a high dimensional space like 4D or 6D

Beam weighting (ND)

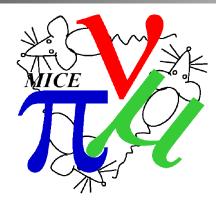
Color by content



- Introduce "Voronoi tesselation"
 - For each point, find nearest neighbour vectors
 - Bisect nearest neighbour vectors to define a tile
 - Determines region nearest to a particular point
 - Content of the region is "phase space volume" of the point 28

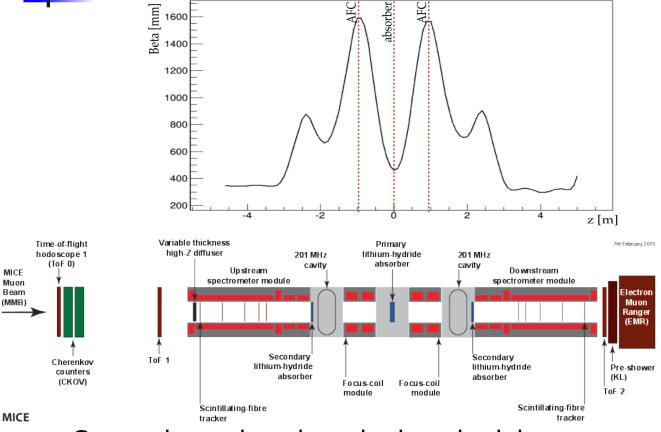
Boundary effects

- Does it work?
 - Go from Var(x), Var(y) = 1, 1 to Var(x), Var(y) = 0.5, 1
 - Try applying weighting 100 times
 - Close enough?

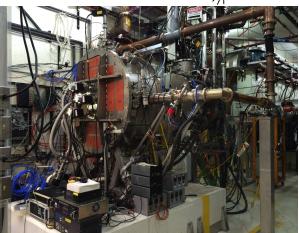

Bayesian Methods

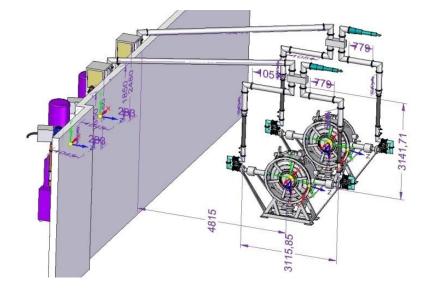
- Use Bayesian method to validate cooling channel model
 - No beam selection required!
 - e.g. magnet currents and measurement errors (toy MC)


param	exact	μ_{prior}	μ_{post}	$\sigma_{\rm prior}$	σ_{post}
θ_1	151.634	147.	151.623	40.	.0185
θ_2	123.807	131.	123.752	40.	.0615
θ_3	142.602	135.	142.762	40.	.0722
θ_4	118.863	113.	118.930	40.	.0496
θ_5	103.874	104.	103.743	40.	.0652
θ_6	-101.920	-104.	-101.668	40.	.0918
θ ₇	-108.330	-112.	-108.203	40.	.0753
θ_8	-132.950	-140.	-132.786	40.	.0976
θ9	-127.378	-131.	-127.736	40.	.1266
θ_{10}	-133.948	-147.	-134.162	40.	.0669
τ_1	6.250e6	5.e6	6.256e6	1.0e6	.0903e6
τ_2	2500.	5000.	2434.	2236.	33.8
τ_3	6.250e6	5.e6	6.351e6	1.0e6	.0867
$ au_4$	2500.	5000.	2508.	2236.	36.7


Demonstration of Ionisation Cooling

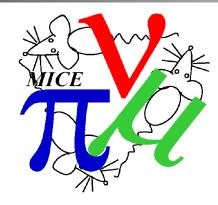
Demonstration of Ionisation Cooling





- Secondary absorber design decisions:
 - Baseline material is LiH fallback is plastic
 - Baseline position is on radiation shutters fallback is in SS bore
- Need to finalise FC->FC gap length optics decision
- Talk by JB Lagrange on Thursday

Demonstration of Ionisation Cooling


- RF cavity operation in 0 B-field demonstrated
- More to hear about operation in > 0 T field later in the week
- RF power distribution system under design
 - Parts have been purchased, some retrofitting
- RF session on Thursday afternoon

To Conclude...



35

Conclusions

- Reminder of purpose and design of MICE
- Status of diagnostics
- Status of magnets
- Plans for operations
- Analysis of data
- Route to full demonstration of ionisation cooling

WHER IS COMING

risovach.ru