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Introduction 
•  RF power loading is an important issue for HPRF cavity 

•  We present simulation studies of plasma dynamics relevant to RF
power loading  

 
•  SPACE, a parallel EM-PIC code for self-consistent simulation of  

plasmas with atomic physics processes: IPAC 2015 MOPMN012 
 
•  Simulations studies related to HPRF experimental program at      

MTA: IPAC 2014 MOPME043, IPAC 2015 MOPMN013 
 
•  Simulations suggest ion-electron recombination rate, electron  
    attachment time, and ion-ion recombination rate 
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Code SPACE 
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•  Parallel Electromagnetic PIC code SPACE for relativistic particles and    ele
ctromagnetic fields  

 
•  Main novelty: 

•  Fully relativistic treatment of particles 
•  Resolution of atomic physics processes / plasma chemistry 
•  Interaction of plasma with neutral matter 
•  Advanced numerical solutions 

•  Approximations enabling long physical time simulations 
•  Adaptive refinement by variable particle mass / charge 
•  Data transfer algorithms between relativistic moving and laboratory

 frames, transforming particles to the same physical time 
•  Implementation for modern multicore supercomputers 
 

•  Support of BNL RHIC projects 
•  Use of plasma for the mitigation of beam-beam effects 
•  Simulations of Coherent Electron Cooling 
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Outline of Plasma Loading Simulation 
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Main processes 
•  A: Neutral gas ionization by beam (Bethe-Bloch Formula) 
•  B: Plasma dynamics in neutral gas (e.g. low mobility of plasma particles) 
•  C: Plasma chemistry: recombination and attachment processes 
•  External field gradient drop in cavity 
•  D, E: beam-plasma interaction 



Main Parameters ���
in Simulations and Experiments 

Parameter Units Value 

Kinetic Energy of Beam MeV 400 

Initial Velocity of Beam m/s 2.13728e+8 

β % 71.292 

H2 Gas Pressure atm (psi) 20.4 (300) 
dE/dx MeV cm2 / g 6.332 

W (Average Ionization Energy) eV 36.2 

Electric Field (Frequency) MV/m (MHz) 8.8 (808.45)
Bunch Population # / bunch 1.61e+8 ~ 2.09e+8  

Bunch Spacing nanosecond 5 

# of Bunches # 1500 ~ 2000 
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Plasma Loading 
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The density of electrons and ions strongly affect plasma loading  
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V0 is peak voltage,      V(t) is RF amplitude at time  t 

is the power consumption in the cavity 

is the average power dump by one   
ion–electron pair during one period  
of the external field 

is the electron mobility 

n  is the plasma density,   R = 1.41 MΩ,    C = 1.49 pF    



Motion of plasma electrons in neutral gas 

Figure : Drift Velocity of Electrons in H2 gas at 293K. 
J.J. Lowke. The Drift Velocity of Electrons in Hydrogen and 
Nitrogen. Aust. J. Phys., 16:115–135, 1962. 
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Fig. External Field Profile in HPRF cavity 
Appr. Formula : Ratio = 0.00448361291 z2 - 0.3631830091 z + 8.24927707 
Max. Errors are less than 2% in both r=0 and r=2.3 mm 

External Field Profile 
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HPRF Cavity Loading 
 

I: Cavity Filled with Pure Hydrogen 
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Simulation Results 
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•  Various coefficients were tested. 
•  The most accurate fitting curve is 
      β = 1.5 10-10 X-1.0. 
•  Beam off at 7.5 . 



Recombination Rate (β) 

11 

Fitting curve at 300 psi 
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Figure from 
B. Freemire’s thesis (Fig. 3.24) 



Pure Hydrogen Test: Conclusions 
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•  Electron – ion recombination is slow 

•  Large plasma (electron) density (1013 1/cc) remains  
 in the cavity in the presence of the beam 

•  Significant (unacceptable) reduction of electric field 

•  To mitigate plasma loading, dry air dopant was used  
in the cavity 

•  We present simulations with 1% dry air dopant at     
300 psi 



Plasma Chemistry in the Presence of Dopant 
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Previous equation (2) is replaced with the following system 

HPRF Meeting 

Ion loading effect is added. 
By the previous analysis, ion loading effect is significant after early time. 



Simulation Results 
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•  Various coefficients were tested.
•  The most accurate combination is
     τ = 4.0 * 10-7 X1.0


     η = 1.6 * 10-10 X-1.0.
•  Hydrogen ion mobility is 20.0 cm2/V/s
•  Beam off at 10 𝜇𝑠.



Attachment Time (τ) 
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Figure. IPAC 2014 THPRI064, Fig. 2
Measurements of electron attachment
time to oxygen in hydrogen (points)   
and fits to the data (lines) at 20.4 atm 
for various dopant concentrations 

Fitting curve at 300 psi with 
1% dry air dopant 
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Mobility of Plasma Ions 
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Table. Values of ion mobility (B. Freemire’s thesis) 

Table. Ion mobility from Phy
sics Review Volume 114 Nu
m. 2, Apr. 15, 1959 



Ion – Ion Recombination Rate (η) 
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Figure. Ion – Ion Recombination Rate at 300 psi with 1% dry air dopant
The right green vertical bar denotes X at the initial time. (8.8 MV/m / 300 psi => 0.029) 
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Electron Density in Simulations 
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Figure. Electron density evolution in the center of the cavity. 



Ion Densities in Simulations 
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Figure. Evolution of ion densities in the center of the cavity. 
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APPENDIX 
Muon Beam-Plasma Simulation:  

Physical Parameters 
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Parameter Units Value 

Kinetic Energy of Beam MeV 121 

Initial Velocity of Beam m/s 2.65e+8 

β % 88.42 

H2 Gas Pressure atm (psi) 160 (2351) 
dE/dx MeV cm2 / g 4.494 

W (Average Ionization Energy) eV 36.2 

Bunch Population # / bunch 5.0e+12  

Beam size (Length / Radius) cm / mm 3 / 2 

Cavity Length cm 5 



MAP 2015 Spring Meeting 21 

Muon Beam – Plasma interaction 

In Vacuum 

In H2 Gas 

150 picosecond 200 picosecond 

Figure. 3 cm beam (2 mm radius) in 5 cm cavity, Plasma is invisible 
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In Vacuum 

In H2 Gas 

250 picosecond 300 picosecond 

Figure. 3 cm beam (2 mm radius) in 5 cm cavity, Plasma is invisible 

Muon Beam – Plasma interaction 



Main conclusions 
•  Simulations suggest accurate fitting function for β                     

   (1.5*10-10 X-1.0) in pure hydrogen case (300 psi)
•  In the case of dry air dopant, accurate results were obtained      

  with τ (4.0 * 10-7 X1.0) and η (1.6 * 10-10 X-1.0)
–  τ  (attachment time) is consistent with measured values
–  Ion mobility is close to measured / calculated values
–  η is far from measured values
–  τ is dominant at the early time; η is dominant after beam off

•  Simulations help to reduce uncertainties / adjust values of       
measured quantities.  After validation, simulations can be used 
for predictions

•  Preliminary simulations show strong influence of plasma on     
intense muon beams. 23 MAP 2015 Spring Meeting 


