Simulations of Plasma Dynamics in HPRF Cavity

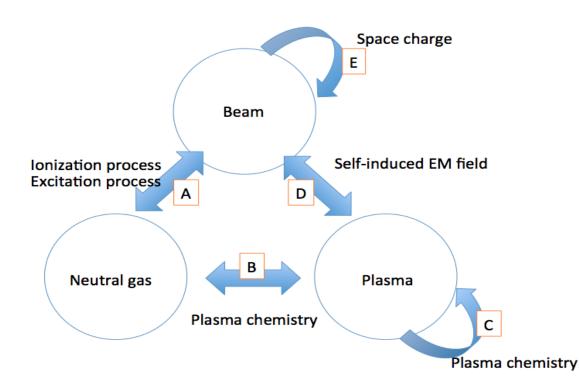
Kwangmin Yu

Dept. of Applied Mathematics and Statistics Stony Brook University, Stony Brook NY 11794

Roman Samulyak

Dept. of Applied Mathematics and Statistics Stony Brook University, Stony Brook NY 11794 Computational Science Center Brookhaven National Laboratory, Upton, NY 11973

> MAP 2015 Spring Meeting @ FNAL May 22th, 2015


Introduction

- RF power loading is an important issue for HPRF cavity
- We present simulation studies of plasma dynamics relevant to RF power loading
- SPACE, a parallel EM-PIC code for self-consistent simulation of plasmas with atomic physics processes: IPAC 2015 MOPMN012
- Simulations studies related to HPRF experimental program at MTA: IPAC 2014 MOPME043, IPAC 2015 MOPMN013
- Simulations suggest ion-electron recombination rate, electron attachment time, and ion-ion recombination rate

Code SPACE

- Parallel Electromagnetic PIC code SPACE for relativistic particles and ele ctromagnetic fields
- Main novelty:
 - Fully relativistic treatment of particles
 - Resolution of atomic physics processes / plasma chemistry
 - Interaction of plasma with neutral matter
 - Advanced numerical solutions
 - Approximations enabling long physical time simulations
 - Adaptive refinement by variable particle mass / charge
 - Data transfer algorithms between relativistic moving and laboratory frames, transforming particles to the same physical time
 - Implementation for modern multicore supercomputers
- Support of BNL RHIC projects
- Use of plasma for the mitigation of beam-beam effects
- Simulations of Coherent Electron Cooling

Outline of Plasma Loading Simulation

Main processes

- A: Neutral gas ionization by beam (Bethe-Bloch Formula)
- B: Plasma dynamics in neutral gas (e.g. low mobility of plasma particles)
- C: Plasma chemistry: recombination and attachment processes
- External field gradient drop in cavity
- D, E: beam-plasma interaction

Main Parameters in Simulations and Experiments

Parameter	Units	Value
Kinetic Energy of Beam	MeV	400
Initial Velocity of Beam	m/s	2.13728e+8
β	%	71.292
H ₂ Gas Pressure	atm (psi)	20.4 (300)
dE/dx	MeV cm ² / g	6.332
W (Average Ionization Energy)	eV	36.2
Electric Field (Frequency)	MV/m (MHz)	8.8 (808.45)
Bunch Population	# / bunch	1.61e+8 ~ 2.09e+8
Bunch Spacing	nanosecond	5
# of Bunches	#	1500 ~ 2000

Plasma Loading $\frac{d \lor (t)}{dt} = \frac{V \circ - \lor (t)}{RC} - \frac{P}{C \lor (t)}$

 V_0 is peak voltage, V(t) is RF amplitude at time t

 $P = \frac{dW}{T} \times n$ is the power consumption in the cavity

$$dW = \int_0^T q\mu E^2 \sin^2(\omega t) dt = \frac{1}{2} q\mu E^2 T$$

is the average power dump by one ion–electron pair during one period of the external field

 μ is the electron mobility

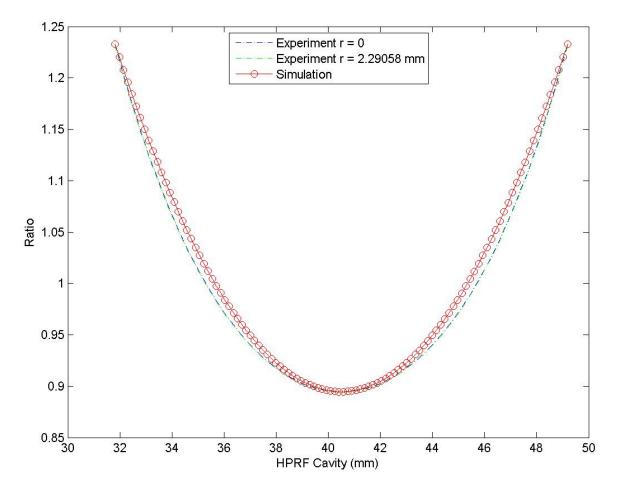
n is the plasma density, $R = 1.41 \text{ M}\Omega$, C = 1.49 pF

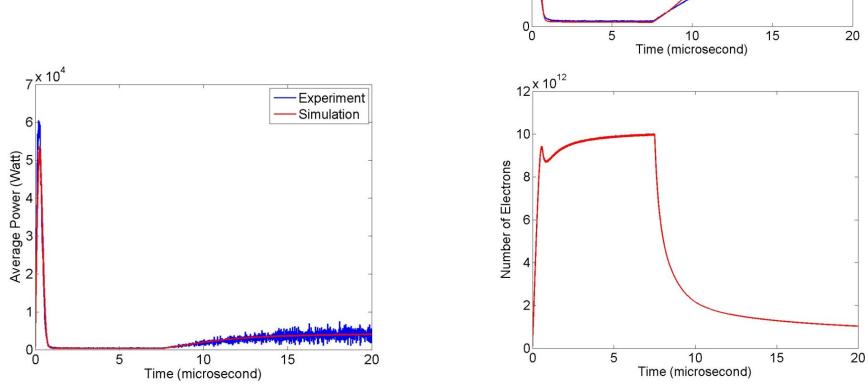
The density of electrons and ions strongly affect plasma loading

Motion of plasma electrons in neutral gas

Figure : Drift Velocity of Electrons in H₂ gas at 293K. J.J. Lowke. The Drift Velocity of Electrons in Hydrogen and Nitrogen. Aust. J. Phys., 16:115–135, 1962.

External Field Profile




Fig. External Field Profile in HPRF cavity Appr. Formula : Ratio = $0.00448361291 z^2 - 0.3631830091 z + 8.24927707$ Max. Errors are less than 2% in both r=0 and r=2.3 mm

HPRF Cavity Loading

I: Cavity Filled with Pure Hydrogen

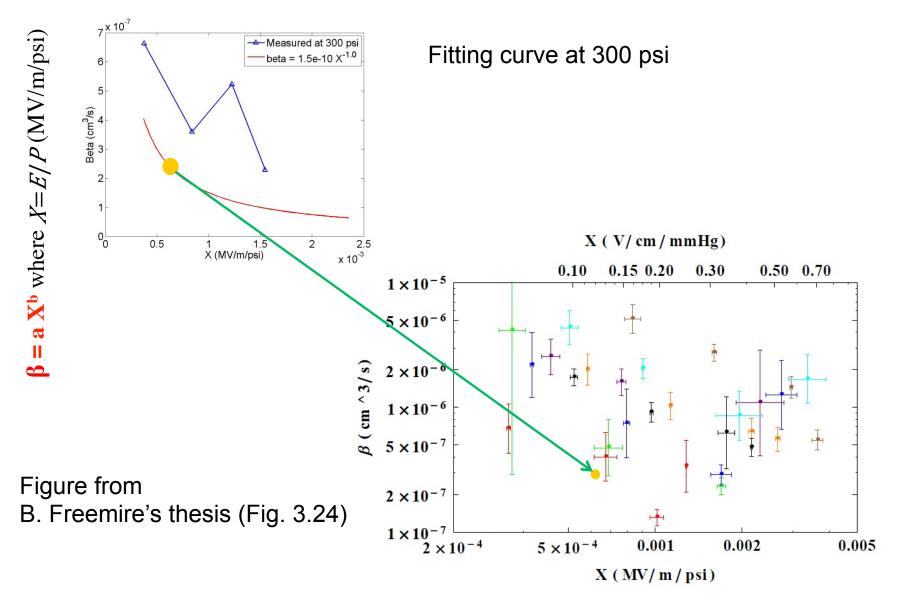
Simulation Results

- Various coefficients were tested.
- The most accurate fitting curve is
 β = 1.5 10⁻¹⁰ X^{-1.0}.
- Beam off at 7.5.

10

8

6


4

2

Magnitude of Electric Field (MV/m)

Experiment Simulation

Recombination Rate (β)

Pure Hydrogen Test: Conclusions

- Electron ion recombination is slow
- Large plasma (electron) density (10¹³ 1/cc) remains in the cavity in the presence of the beam
- Significant (unacceptable) reduction of electric field
- To mitigate plasma loading, dry air dopant was used in the cavity
- We present simulations with 1% dry air dopant at 300 psi

Plasma Chemistry in the Presence of Dopant

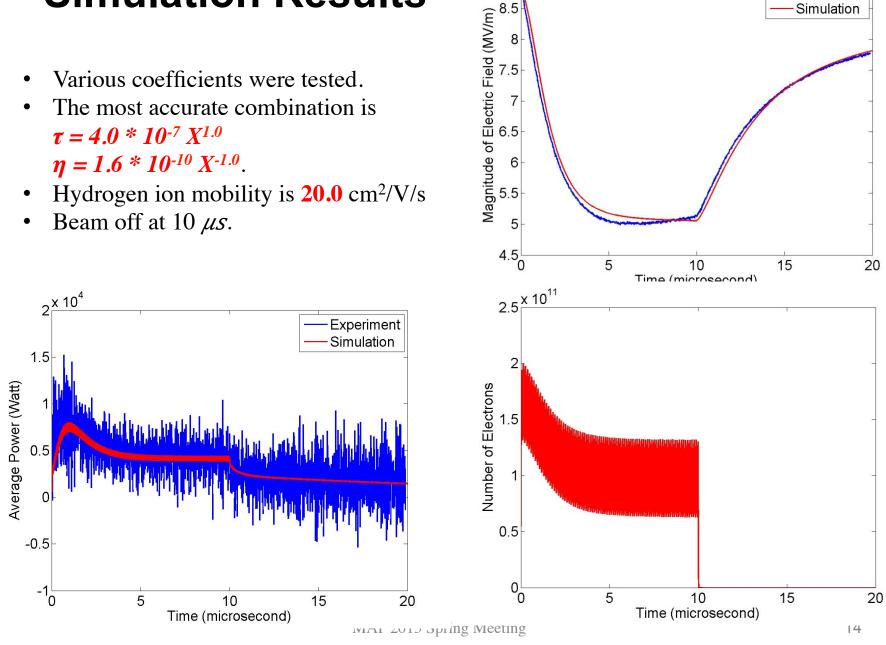
$$\frac{dn_e}{dt} = N - \beta_e \, n_e \sum n_{H_n^+} \tag{2}$$

Previous equation (2) is replaced with the following system

$$\frac{dn_e}{dt} = N - \beta_e \ n_e n_{H^+} - \frac{n_e}{\tau}$$
(3)

$$\frac{dn_{H^+}}{dt} = N - \beta_e \, n_e n_{H^+} - \eta \, n_{H^+} n_{O_2}^{-} \tag{4}$$

$$\frac{dn_{O_2}}{dt} = \frac{n_e}{\tau} - \eta \, n_H + n_{O_2} -$$
(5)

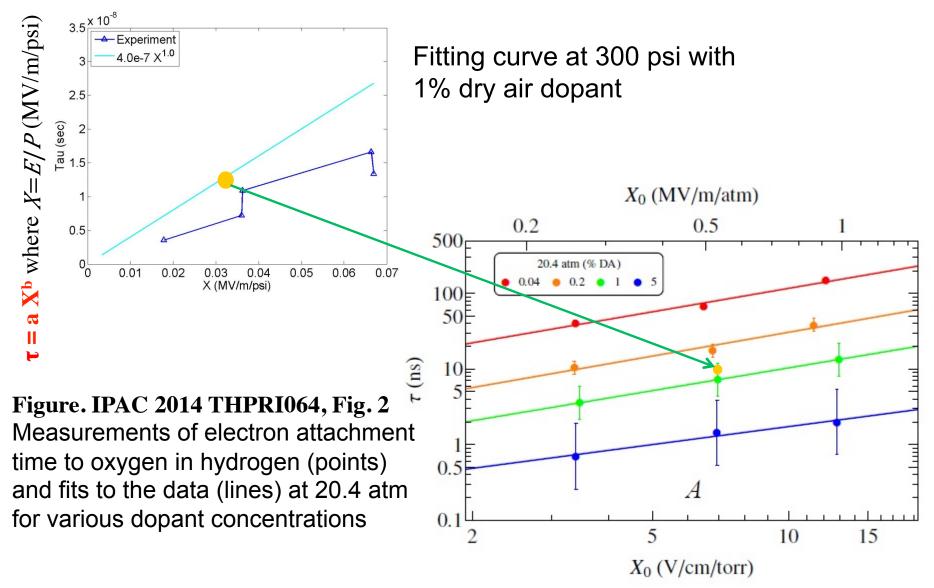

where $n_{H^+} = \sum n_{H_n^+}$: the sum of all hydrogen ion cluster numbers, η : the effective recombination rate of hydrogen ion clusters and oxygen ion, τ is the attachment time of electrons on the dopant molecules. $\frac{1}{\tau} = \sum_m k_m n_{O_2} n_m$, m is one of H_2 , O_2 , or N_2 ,

By the previous analysis, ion loading effect is significant after early time. Ion loading effect is added.

HPRF Meeting

Simulation Results

- Various coefficients were tested.
- The most accurate combination is $\tau = 4.0 * 10^{-7} X^{1.0}$ $\eta = 1.6 * 10^{-10} X^{-1.0}$.
- Hydrogen ion mobility is $20.0 \text{ cm}^2/\text{V/s}$
- Beam off at 10 μ s. •



9

Experiment

Simulation

Attachment Time (τ)

Mobility of Plasma Ions

		= Table. Va	Table. Values of ion mobility (B. Freemire's thesis)		
Ion	Reduced Mobility $\left(\frac{cm^2}{Vs}\right)$)			
H_3^+	11.2				
H_5^+	9.6	TABLE I. Calculated mobilities at standard gas density (0°C, 1 atmos).			
O_2^-	11.4	T	K	o (cm² volt ⁻¹ sec ⁻	-1)
-		(°K)	H ₂ ⁺ in H ₂	H_2^+ in H_2	H ⁺ in H ₂
		0	14.2	15.6	19.3
		50	15.1	14.8	19.0
		100	16.2	14.6	18.8
		150	17.9	14.4	18.7
Table. Ion mobility from Phy sics Review Volume 114 Nu		200	19.5	14.2	18.6
		300	22.0	13.9	18.3
		400	23.4	13.6	18.0
		500	24.4	13.3	17.8
m. 2. A	pr. 15, 1959 🛛 🚽				
,		· · ·			

Ion – Ion Recombination Rate (η)

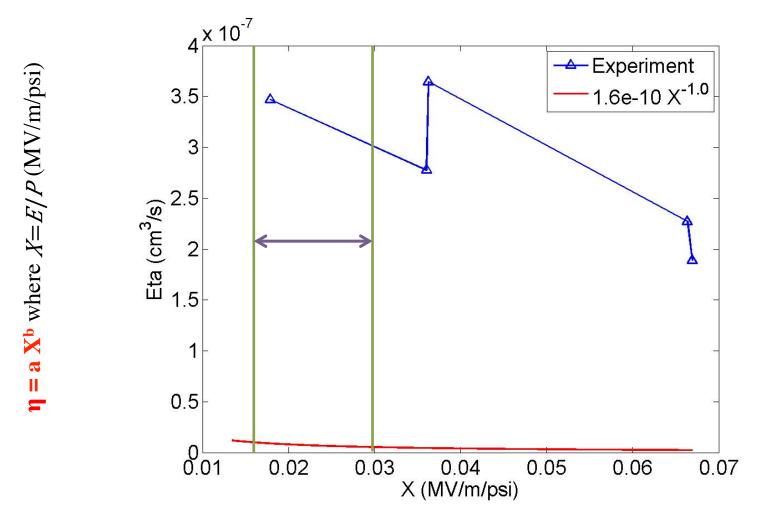


Figure. Ion – Ion Recombination Rate at 300 psi with 1% dry air dopant The right green vertical bar denotes X at the initial time. (8.8 MV/m / 300 psi => 0.029)

Electron Density in Simulations

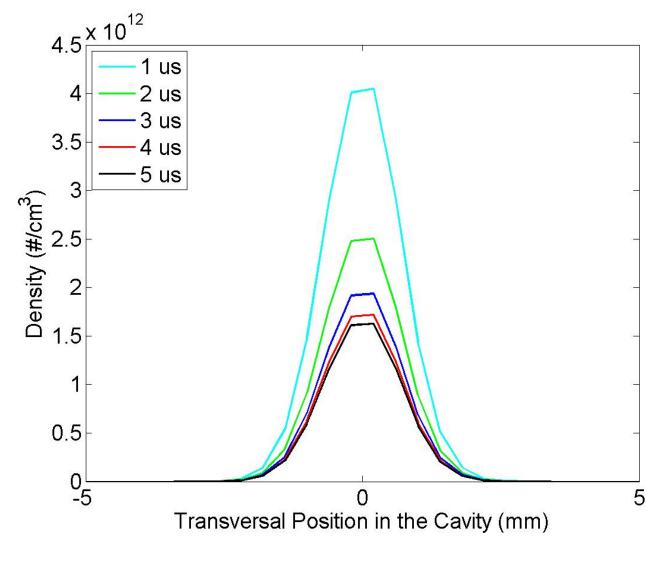
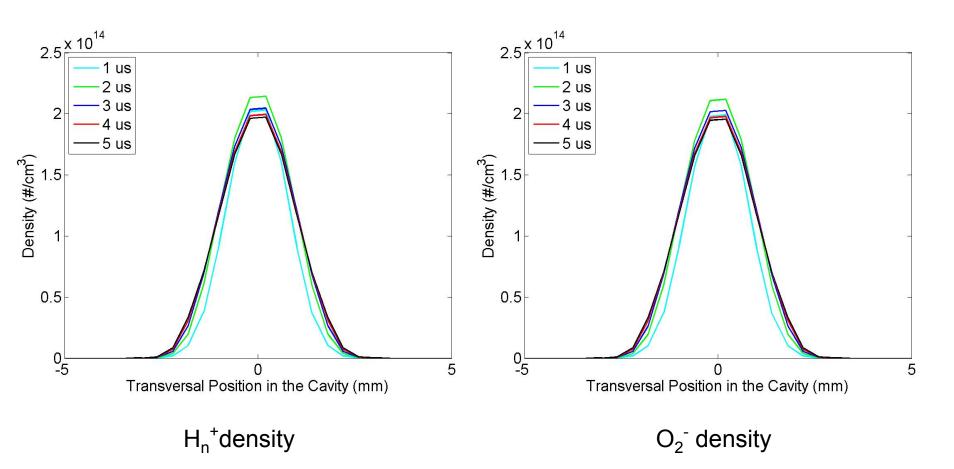



Figure. Electron density evolution in the center of the cavity.

Ion Densities in Simulations

APPENDIX Muon Beam-Plasma Simulation: Physical Parameters

Parameter	Units	Value
Kinetic Energy of Beam	MeV	121
Initial Velocity of Beam	m/s	2.65e+8
β	%	88.42
H ₂ Gas Pressure	atm (psi)	160 (2351)
dE/dx	MeV cm ² / g	4.494
W (Average Ionization Energy)	eV	36.2
Bunch Population	# / bunch	5.0e+12
Beam size (Length / Radius)	cm / mm	3 / 2
Cavity Length	cm	5

Muon Beam – Plasma interaction

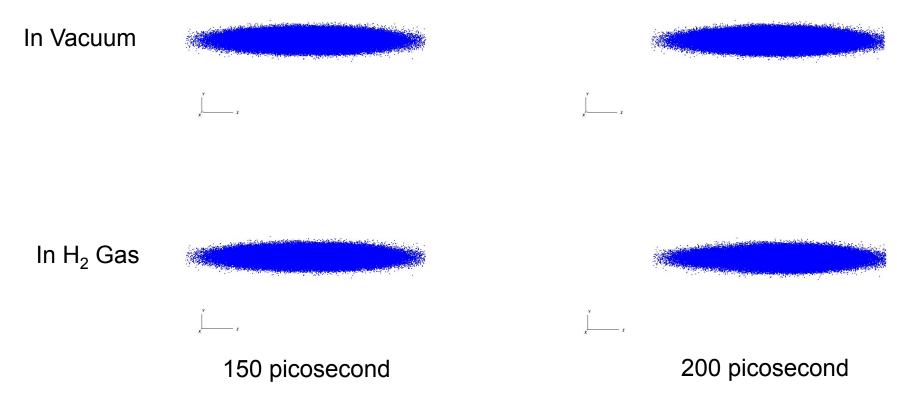


Figure. 3 cm beam (2 mm radius) in 5 cm cavity, Plasma is invisible

MAP 2015 Spring Meeting

Muon Beam – Plasma interaction

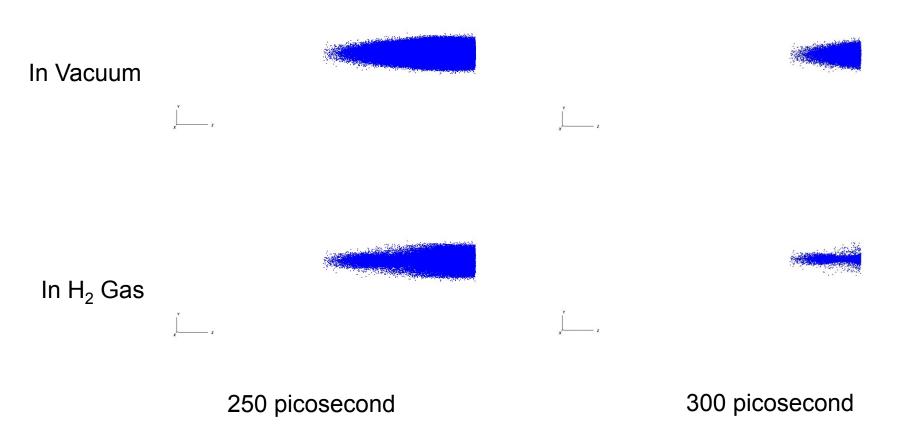


Figure. 3 cm beam (2 mm radius) in 5 cm cavity, Plasma is invisible

MAP 2015 Spring Meeting

Main conclusions

- Simulations suggest accurate fitting function for β (1.5*10⁻¹⁰ X^{-1.0}) in pure hydrogen case (300 psi)
- In the case of dry air dopant, accurate results were obtained with $\tau (4.0 * 10^{-7} X^{1.0})$ and $\eta (1.6 * 10^{-10} X^{-1.0})$
 - $-\tau$ (attachment time) is consistent with measured values
 - Ion mobility is close to measured / calculated values
 - $-\eta$ is far from measured values
 - $-\tau$ is dominant at the early time; η is dominant after beam off
- Simulations help to reduce uncertainties / adjust values of measured quantities. After validation, simulations can be used for predictions
- Preliminary simulations show strong influence of plasma on intense muon beams. MAP 2015 Spring Meeting