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86 4 Neutrino Mixing, Mass Hierarchy, and CP Violation

baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
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ν

Perturbative QFT

Nuclear physics

Lattice QCD

Event generation and 
detector modeling

Precision hadron
physics

adapting existing tools, 
and  

developing new tools

HEP Theory is…  

~this talk

following talk  
of A. Meyer

following talk  
of A. Kronfeld
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- effective field theory and mass scales 

A few words about radiative corrections in neutrino 
scattering

- electromagnetic radiative corrections

Then a look at electron-proton scattering 

- vector form factor inputs for neutrino observables

- proving ground for theory

(- important in its own right: Rydberg constant puzzle)

why?
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µdLē�µ⌫L + . . .

d u

⌫ e
W �, Z+

d u

⌫ e
�

+

6Richard  Hill                    University of Chicago                                                                    Nu@Fermilab Meeting



- electromagnetic radiative corrections and neutrino 
cross sections
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- all important issues appear in e-p 
scattering where there is much data, 
controlled flux and nuclear corrections 
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FIG. 2. Our estimate in the lepton leg leading log approxima-
tion of the fractional difference between the electron and muon
neutrino total charged-current quasi-elastic cross-sections, ∆
as defined in Eq. 15, as a function of neutrino energy. The
negative difference means that the electron neutrino cross-
section is larger than the muon neutrino cross-section.

mass final state lepton energy and momentum. E∗
ℓ can

be expressed in terms of invariants as

E∗
ℓ =

s+m2 −M2

2
√
s

. (18)

Figure 1 shows the effect of the kinematic limits. Not
surprisingly, the effect is very large near the threshold
for the muon neutrino and anti-neutrino reaction. These
effects are accounted for in the description of the quasi-
elastic process in all commonly used neutrino generators.
However, it is worth noting that the difference in Q2

spanned by the two reactions can lead to large effects in
varying form factors that significantly affect either the
small or large Q2 parts of the cross-section.

B. Radiative Corrections

To calculate the effect of radiative corrections on the
total quasi-elastic cross-section, we follow the approxi-
mate approach of calculating the leading log correction
to order logQ/m, whereQ is the energy scale of the inter-
action process[5]. This approach has a calculational ad-
vantage in investigating the differences due to the lepton
mass, m because the lepton leg leading log only involves
sub-processes where photons attach to leptons. The key
result from this approach is that the cross-section which
allows for the presence of radiated photons, σLLL is re-
lated to the Born level cross-section, σB , by

dσLLL

dEℓdΩ
≈

dσB
dEℓdΩ

+
αEM

2π
log

4E∗
ℓ

m2

∫ 1

0
dz
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×
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z
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−
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dEℓdΩ

)

, (19)

where E∗
ℓ is the center-of-mass frame lepton energy.

In the case of elastic scattering, the relationship in σB
between Eℓ and the scattering angle, θℓ simplifies the
calculation because there is at most one z in the inte-
grand for which the cross-section does not vanish for a
particular lepton angle:

z=
[

2Eℓ (M + Eν)
(

m2 + 2MEν

)

− 2 cos2 θℓEℓEν

×
√

m4 + 4E2
ν

(

M2 −m2 sin2 θℓ
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− 4m2M2 − 4m2MEν
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/
[

m4 + 4Eν

(

Eν

(

m2 cos2 θℓ +M2
)

+m2M
)]

. (20)

We then obtain the remaining cross-section by integrat-
ing Eq. 19 over the final state lepton energy. Note that
this procedure only gives a prescription for evaluating
dσ(Eν,true)/dQ2

true; however, the radiation of real pho-
tons means that the relationship between lepton energy
and angle and Eν and Q2 in elastic scattering will no
longer be valid. The effect of this distortion of the elastic
kinematics will depend on the details of the experimental
reconstruction and the neutrino flux seen by the experi-
ment, so the effect must be evaluated in the context of a
neutrino interaction generator and full simulation of the
reconstruction for a given experiment.
The difference of the effect on the total cross-sections

as a function of neutrino energy is shown in Fig. 2. We
estimate a difference of approximately 10% over the en-
ergies of interest in oscillation experiments. The largest
differences fractional differences in cross-sections are at
high true Q2 and low neutrino energies. The magni-
tude of the lepton leg correction to the muon neutrino
total cross-section is smaller, roughly 0.4 times this dif-
ference, so the larger effect is on the electron neutrino
cross-section.
Our estimation of the effect is surprisingly large at the

relevant energies for oscillation experiments. Some por-
tion of this difference in the total cross-section in Fig. 2
may be canceled by diagrams missing from the leading
log correction in the lepton leg, such as box diagrams in-
volving Wγ exchange between the leptonic legs and the
initial or final state, which will also depend on the final
state lepton mass [17]. We stress that this is only an ap-
proximate treatment which should be confirmed in a full
calculation implemented inside a generator, and to date
radiative corrections are not included in the commonly
used neutrino interaction generators[6–9].

C. Uncertainties in F 1
V , F 2

V and FA

As noted above, the vector form factors F 1
V and F 2

V are
precisely measured in charged lepton scattering[18]; how-
ever, the axial form factor is still uncertain because neu-
trino experiments that measure it do not agree amongst
themselves or with determinations in pion electroproduc-
tion as discussed above. Therefore the axial form factor
will dominate any differences in the electron and muon

Day, McFarland 2012
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• serious issues to confront in the precision era of lepton-nucleon 
scattering data

• addressing these issues will be critical to discovery potential of the 
accelerator neutrino program

Regardless of the existence of the “proton radius puzzle”:
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signal process at DUNE, HyperK, NOvA, T2K, …e-p scattering

rE: discrepancies ~8% , large compared to LNBE requirements in a 

Solving the simpler e-p problem prerequisite to more challenging 
neutrino processes 
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Some facts about the Rydberg constant puzzle (a.k.a. 
proton radius puzzle) 

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• 5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy
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Some facts about the Rydberg constant puzzle (a.k.a. 
proton radius puzzle) 

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• 5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy

3) Systematic effects in electron-proton 
scattering impact neutrino-nucleus scattering, 
at a level large compared to precision 
requirements for oscillation measurements

This is HEP’s (and everyone’s) problem:
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Recall hydrogen spectrum: 

Disentangle 2 unknowns, R∞ and rE, using well-measured 1S-2S 
hydrogen transition and 

En ⇠ R1
n2

+
r2E
n3

hcR1 =
mec2↵2

2
⇡ 13.6 eV proton charge radius
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Recall hydrogen spectrum: 
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hydrogen transition and 

(1) another hydrogen interval
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hcR1 =
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2
⇡ 13.6 eV proton charge radius
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5σ discrepancy in Rydberg constant from (1+2) versus (3)

Recall hydrogen spectrum: 

Disentangle 2 unknowns, R∞ and rE, using well-measured 1S-2S 
hydrogen transition and 

(2) electron-proton scattering determination of rE

(3) a muonic hydrogen interval (2S-2P) 
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0.85 0.9 0.95

A1 analysis of Mainz data 
(default: 8 parameter cubic 
spline fit)

this talk:  new analysis of proton charge and magnetic 
radii from electron scattering data
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Unfortunately, for the proton form factors, a simple Taylor expansion 
has finite (small) radius of convergence

Fortunately, the analytic structure of amplitudes allows us to resum by 
change of variables into expansion covering the entire physical region 

4m2
⇡

GE(q
2) =

X

k

ak[z(q
2)]k

Bounded parameter space that 
contains the true form factor

Fit for undetermined order 
unity coefficients ɑk
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0.85 0.9 0.95
rE [fm]

z expansion (our analysis)

A1 analysis of Mainz data

Require form factors to lie within QCD-constrained class of 
curves:  larger (7σ) discrepancy with μ-Hydrogen !
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Besides 7σ discrepancy with μH, now 3σ tension with H,  3σ with A1 
analysis of same dataset.

Also: tension between fit to entire dataset and fit to data subsets

⇒ Form factor shape is important
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FIG. 1: Extracted electric (top panel) and magnetic (bot-
tom panel) radii as a function of kinematic cut Q

2

max

on
momentum transfer for the 1422 point A1 MAMI dataset,
using the z expansion with t

0

= 0, Gaussian priors with
|ak|max

= |bk|max

/µp = 5, k

max

= 12. One-� error bands
are statistical only.

Table IV and Fig. 20 of Ref. [8]. We have compared our
results to the output from the example fitting code pro-
vided as part of the Supplemental Material for Ref. [8],
finding agreement with the results of this code. For ex-
ample in the case of the polynomial of degree 10, the
results of the example fitting code agree with our results
in Table II, both having a minimum �

2 of 1561.6, lower
than the value 1563 quoted in Table IV of Ref. [8]. 14

B. Bounded z expansion fits

Let us proceed to consider the implications of the
bounded z expansion. Here we retain the identical
dataset as employed in Table II. For the default fit we
take t

0

= 0, k

max

= 12, and a Gaussian bound of
|ak|max

= |bk|max

/µp = 5. The value k

max

= 12 is
large enough that the result does not change if k

max

is
increased further.

14 More precisely, the fitting code returned a �2 of 1561.60 and
rM = 0.797 fm. Evaluating our �2 function with the correspond-
ing parameters yielded an identical 1561.60. Using the same
initialization conditions as the example fitting code, our mini-
mization code independently returned a minimum �2 of 1561.58
and rM = 0.794 fm, as displayed in Table II.

TABLE III: Results from the fits in Fig. 1 for three values of
Q

2

max

. N� is the number of cross section points with Q

2 below
Q

2

max

and N

norm

is the number of normalization parameters
appearing in the data subset.

Q

2

max

[GeV2] rE [fm] rM [fm] �

2

min

N� N

norm

0.05 0.873(18) 1.071(114) 479.4 483 13
0.5 0.905(10) 0.749(28) 1404.7 1285 29
1 0.920(9) 0.743(25) 1605.5 1422 31

The results for this fit are displayed in Fig. 1 as a
function of Q

2

max

. The extracted radii and �

2 values are
provided for three Q

2

max

values in Table III. The quoted
uncertainty includes only the statistical-type uncertain-
ties, i.e., counting statistics and uncorrelated systematic
uncertainties that are represented by rescaling of the sta-
tistical errors in the A1 dataset. The uncertainty is ob-
tained by varying the radius around the best fit value,
refitting the data while allowing all dataset normaliza-
tions to float, to map out the �

2 contour as a function of
radius. The contours are typically symmetric and very
nearly parabolic, and in the tables we quote the average
of the change in radius that yields ��

2 = 1 on the high
and low side of the central value. Note that the primary
A1 analysis of the Mainz data, identical except for the
choice of fitting function, yielded [8] rE = 0.879(5)

stat

fm
and rM = 0.777(13)

stat

fm, including only statistical un-
certainties for comparison with our bounded z expansion
results in Table III.

C. Discussion

Let us remark on three aspects of the fits summarized
in Table III. First, we remark that the bounded z ex-
pansion fit to the entire 1422 point dataset (Q2

max

=
1 GeV2) yields an electric radius significantly larger than
the Mainz A1 extraction [8]. Having analyzed identi-
cal datasets, this di↵erence arises solely from requiring
the form factors to lie within the class allowed by the
bounded z expansion. The di↵erence, 0.041 fm, is large
compared to the Mainz estimated systematic uncertainty.
The magnetic radii exhibit a smaller di↵erence, with our
result 0.034 fm below the Mainz extracted value.

Second, the extracted radii have significant dependence
on Q

2

max

. For example, rE = 0.873(18)
stat

fm with
Q

2

max

= 0.05 GeV2 versus rE = 0.920(9)
stat

fm with
Q

2

max

= 1 GeV2. The di↵erence, 0.047 fm, is again
large compared to the quoted uncertainties. Further-
more, there is a non-negligible variation of the rE central
value as Q

2

max

is increased above 0.5 GeV2, even though
the region below 0.5 GeV2 includes more than 90% of
the data points, and (as illustrated below in Fig. 10) the
data above 0.5 GeV2 does not significantly impact the
radius uncertainty. In fits with unbounded parameters,
it is not surprising that the extracted radius is sensitive
to higher-Q2 data, because the radius may change to pro-

μ-Hydrogen (CREMA)

central value, +/- 1σ stat. only
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Figure 1: Virtual radiative corrections through first order in ↵. for point particle (top particle line)
scattering on a composite particle (bottom particle line). Wavefunction renormalization contributions
are not shown explicitly.
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be interesting to pursue more general “physical convexity” theorems involving multiple probability
sums and correlated errors.redone selected fits with a global search strategy to verify that a true
minimum has been found by the inductive search that assumes convexity.

3.4 Deficiencies in other parameterizations

We remark that several parameterizations of the proton form factors in common use rely on flawed
theoretical assumptions. A simple Taylor expansion in q

2 [11] is valid only for momentum transfers
below pion production threshold q

2  4m

2

⇡ ⇡ 0.08 GeV2. Convergence of a sequence of Padé approx-
imants, implemented either directly as a ratio of polynomials [16], or as a continued fraction [17],
requires positivity of the spectral function in the dispersive representations of the form factors, a
property which is not satisfied. 6

4 Radiative corrections

We will present fits employing variations of a default radiative correction model. Possible deficiencies
in this model are treated at the same level as experimental systematic errors. Let us review the
description of the cross section including first order radiative corrections. The relevant amplitudes
are depicted in Figs. 1 and 2.

6That it cannot be satisfied is readily seen from the asymptotic behavior Q�2 for the form factor represented by
such a spectral function.
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imants, implemented either directly as a ratio of polynomials [16], or as a continued fraction [17],
requires positivity of the spectral function in the dispersive representations of the form factors, a
property which is not satisfied. 6

4 Radiative corrections

We will present fits employing variations of a default radiative correction model. Possible deficiencies
in this model are treated at the same level as experimental systematic errors. Let us review the
description of the cross section including first order radiative corrections. The relevant amplitudes
are depicted in Figs. 1 and 2.

6That it cannot be satisfied is readily seen from the asymptotic behavior Q�2 for the form factor represented by
such a spectral function.

5

p

k

p

0

k

0

(a) (b) (c)

(d)

Figure 1: Virtual radiative corrections through first order in ↵. for point particle (top particle line)
scattering on a composite particle (bottom particle line). Wavefunction renormalization contributions
are not shown explicitly.

A

2

i ! A

2

i +B

2

i , for which the simple convexity theorem following from (14) no longer applies. It may
be interesting to pursue more general “physical convexity” theorems involving multiple probability
sums and correlated errors.redone selected fits with a global search strategy to verify that a true
minimum has been found by the inductive search that assumes convexity.

3.4 Deficiencies in other parameterizations

We remark that several parameterizations of the proton form factors in common use rely on flawed
theoretical assumptions. A simple Taylor expansion in q

2 [11] is valid only for momentum transfers
below pion production threshold q

2  4m

2

⇡ ⇡ 0.08 GeV2. Convergence of a sequence of Padé approx-
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Figure 2: First order real radiative corrections for electron scattering on proton. In (a) crosses denote
possible attachments of the radiated photon.

4.1 Single photon exchange

Let us rigorously define the charge radius of a composite fermion such as the proton as an observable
(in particular, IR finite) quantity in the presence of radiative corrections. To begin, consider the
amplitude for one exchanged photon,
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(a) (b)

Figure 2: First order real radiative corrections for electron scattering on proton. In (a) crosses denote
possible attachments of the radiated photon.

4.1 Single photon exchange

Let us rigorously define the charge radius of a composite fermion such as the proton as an observable
(in particular, IR finite) quantity in the presence of radiative corrections. To begin, consider the
amplitude for one exchanged photon,
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6

In order to isolate the proton vertex defining form factors and radius

must subtract off radiative corrections that are part of the experimental 
measurement:

(Through one-loop order, some residual uncertainty from two-
photon exchange)
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chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,
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Large logarithms spoil QED perturbation theory when  Q2 ~ 

+

A standard ansatz sums leading logarithms by exponentiating 1st order: 
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.

D. Final radius extractions
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FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2

max

. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t

0

= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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0
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/µp = 5, k
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reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .
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theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
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rithms to all orders in perturbation theory when there
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1422 point Mainz dataset and to the world dataset. For
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
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Default fit: exponentiate complete 
one loop radiative corrections

Exponentiate log2 (Q2/me2)

More detailed analysis of subleading radiative corrections required and in 
progress.   Have presented results using (“state of the art”) standard radiative 
correction models. 

muonic 
hydrogen

Potentially large corrections.  
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Lessons for neutrino scattering
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1) form factor shape assumptions matter

very likely an underestimate relying on 
assumed dipole shape (cf. A. Meyer’s talk)
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Lessons for neutrino scattering

2) radiative corrections matter
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t
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= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
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= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .
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by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.

D. Final radius extractions
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FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2

max

. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t

0

= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness

The order at issue in e-p scattering is the same order that 
appears (and is presently ignored) in ν-N scattering
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Summary

A systematic framework is being constructed to map elementary-
target/lattice data through to oscillation observables

Demonstrated with electron-proton scattering

Particle theory toolbox is being applied to neutrino cross sections 

Both form factor shape and radiative corrections are important, and 
require refined treatment

Similar techniques may be applied to elementary-target neutrino data

● Limited statistics from bubble chamber data (see A. Meyer)

● First principles calculations from lattice QCD (see A. Kronfeld)
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Comments and points for discussion

● Important to quantify the impact of elementary target + nuclear + 
radiative correction + other uncertainty on oscillation observables

(what is the impact of X ?  In many cases, easy to see that corrections 
are  “large”, but quantification needed in order to focus effort)

● It is a collaborative effort.  Not just HEP.  Not just nuclear.  
(definitions may be unhelpful)

● There are interesting, timely, theory problems directly impacting 
neutrino cross sections.   Precision lattice baryon matrix elements.  
SCET for exclusive lepton/nucleon processes (+ BSM, + nuclear + …)

23Richard  Hill                    University of Chicago                                                                    Nu@Fermilab Meeting

exciting theory! exciting applications! exciting opportunities!



back up
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Capitalize on new detector technologies
C. Blanco, M. Wetstein, RJH
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Figure 1: TOP: The overal shape of the reconstructed energy distribution from a 1 GeV

monoenergetic neutrino beam for a sample with only a single lepton and no final state pions,

derived from muon kinematics assuming elasticity. TOP: Shape of the energy distribution

for the inclusive sample (solid black line) with contributions inelastic single-nucleon scatters

shown in the smaller red region and with the addition of MEC interactions, shown in the

larger purple region. LOWER: The same distributions for the sample selected with no final

state neutrons (left) and sample selected with one or more final state neutrons (right).

4

Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 20

1000

2000

3000

4000

Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 20

500

1000

1500

2000

2500

3000

Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 20

500

1000

1500

Figure 1: TOP: The overal shape of the reconstructed energy distribution from a 1 GeV

monoenergetic neutrino beam for a sample with only a single lepton and no final state pions,

derived from muon kinematics assuming elasticity. TOP: Shape of the energy distribution

for the inclusive sample (solid black line) with contributions inelastic single-nucleon scatters

shown in the smaller red region and with the addition of MEC interactions, shown in the

larger purple region. LOWER: The same distributions for the sample selected with no final

state neutrons (left) and sample selected with one or more final state neutrons (right).

4

Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 20

1000

2000

3000

4000

Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 20

500

1000

1500

2000

2500

3000

Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 20

500

1000

1500

Figure 1: TOP: The overal shape of the reconstructed energy distribution from a 1 GeV

monoenergetic neutrino beam for a sample with only a single lepton and no final state pions,

derived from muon kinematics assuming elasticity. TOP: Shape of the energy distribution

for the inclusive sample (solid black line) with contributions inelastic single-nucleon scatters

shown in the smaller red region and with the addition of MEC interactions, shown in the

larger purple region. LOWER: The same distributions for the sample selected with no final

state neutrons (left) and sample selected with one or more final state neutrons (right).

4

- final state protons in LArTPC

≥1 neutron

Nuclear effects and energy reconstruction biases

cf. colliders:    define event classes to isolate underlying parton 
mechanisms (vector boson fusion, gluon fusion,…)

for neutrinos:   define event classes with (in)sensitivity to underlying 
nucleon-level mechanisms (multinucleon processes,…)

- final state neutrons (WC: ANNIE, LAr: CAPTAIN)
Richard  Hill                    University of Chicago                                                                    2015 Fermilab Users Meeting

0 neutron

(GENIE, +30% MEC)

1 GeV neutrino events, 
0 pions, reconstructed 

as quasielastic
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Q: What is HEP theory doing about this problem? 

New 
physics

LHC DUNE

…

perturbative 
QCD, PDFs

showering, 
hadronization,

detector response

?

nuclear modeling,
detector response

observable observable
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Consider a range of one-loop Two-Photon Exchange (TPE) 
corrections

Take Blunden et al. hadronic model as default

Model dependence in TPE, but appears small for rE
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FIG. 5: Extracted electric (top panel) and magnetic (bot-
tom panel) radii as a function of kinematic cut Q2

max

on mo-
mentum transfer for several TPE models, as discussed in
the text: no correction (red, dotted); Feshbach correction
(black, solid); SIFF dipole (green, dot-dashed); SIFF sum of
monopoles (blue, dashed). There is a negligible di↵erence be-
tween the SIFF choices of dipole and sum of monopoles. Fits
are to the 1422 point A1 MAMI dataset, using the z expansion
with t

0

= 0, Gaussian priors with |ak|max

= |bk|max

/µp = 5,
k

max

= 12.

TABLE IV: Change in the extracted charge and magnetic
radii for three di↵erent TPE corrections, relative to the Fes-
hbach correction applied in the Mainz analysis. Results are
for the fit with Q

2

max

= 0.05, 0.5, 1GeV2 in Fig. 5.

Q

2

max

[GeV2] model �rE [fm] �rM [fm]
0.05 Feshbach ⌘ 0 ⌘ 0

SIFF dipole �0.004 +0.022
SIFF Blunden �0.004 +0.025

No TPE �0.023 �0.028
0.5 Feshbach ⌘ 0 ⌘ 0

SIFF dipole �0.003 +0.036
SIFF Blunden �0.002 +0.034

No TPE �0.017 �0.026
1 Feshbach ⌘ 0 ⌘ 0

SIFF dipole �0.003 +0.038
SIFF Blunden �0.002 +0.037

No TPE �0.016 �0.026

proton structure. The exact result for arbitrary kinemat-
ics for a point-like proton [36] yields a correction that
grows with Q

2, approximately doubling the correction
between Q

2 = 0 and 1 GeV2. However, calculations us-
ing either hadronic [33] or partonic [35] models to account
for proton structure indicate that the correction does not

grow with increasing Q

2 but instead becomes smaller and
then changes sign. This is the behavior required to ex-
plain the di↵erence between Rosenbluth and polarization
measurements of µpGE/GM for the proton [22], and has
been recently confirmed for Q

2 ⇡ 1–1.5 GeV2 by com-
parisons of positron and electron scattering from the pro-
ton [72, 73].

There is a significant di↵erence in the charge radius be-
tween the case of no TPE corrections and either the Fes-
hbach or SIFF corrections. However, there is a relatively
small di↵erence between Feshbach and SIFF, suggesting
that the infinite proton mass limit provides a significant
part of the correction for rE . For the magnetic radius,
there is a large di↵erence between all three approaches.
For both the charge and magnetic radii, there is little
sensitivity to the choice of form factors included in the
SIFF calculation. We collect in Table IV the deviations
of the extracted radius using di↵erent models in place of
the Feshbach correction. In all subsequent fits we em-
ploy the SIFF ansatz, using for definiteness the sum of
monopoles in Table I as our default TPE model. The
uncertainty associated with TPE corrections will be in-
corporated into the evaluation of correlated systematic
uncertainties in Sec. VI D

B. Uncorrelated systematic uncertainties

1. Rescaling studies

To estimate the uncorrelated systematic uncertainties,
the A1 collaboration performed a fit to the entire 1422
point dataset using a default form factor model (an 8-
parameter cubic spline model for each of GE and GM ).
The data were then grouped according to the beam en-
ergy and the spectrometer used in the measurement. For
each data group, the uncorrelated systematic uncertain-
ties were taken from examination of the distribution of
the di↵erences between measured and fit cross sections,
scaled by the uncertainty from counting statistics. (If the
counting statistics fully represented the uncorrelated un-
certainties, then this should be a Gaussian distribution
with unit width.) This distribution was fit with a Gaus-
sian, whose width was then taken as the scaling factor
applied to the counting statistics to determine the com-
bined statistical and systematic uncorrelated uncertain-
ties. The scaling factors obtained in this way vary from
1.070 to 2.283, as given in the Supplemental Material of
Ref. [8].

This rescaling procedure is meant to yield a reduced
�

2 close to unity when the data is compared to the orig-
inal fit. However, because the Gaussian fit may under-
estimate the impact of outliers and the scaling of the
uncertainties changes the relative weighting of the di↵er-
ent datasets, the fit to the dataset with updated uncer-
tainties yields a reduced �

2 somewhat larger than unity:
�

2

red

⇡ 1.15 for the entire dataset. This suggests that the
quoted systematics are somewhat underestimated.

μ-Hydrogen (CREMA)

Feshbach (A1 default)

SIFF dipole

SIFF Blunden

None

PRC 72, 034612
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Radius defined as slope.  Requires data over finite Q2 range

maximum Q2 [GeV2]
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[sensitivity studies based on bounded z expansion fit]
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Radius defined as slope.  Requires data over finite Q2 range
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Experimental landscape: hydrogen

Proton Puzzle         Mainz           June 3, 2014            Eric Hessels  York University  Toronto  Canada                12 

Comparing muonic hydrogen to the individual 
measurements makes the conflict seem not as big: 
all but one agree with µp to within 2 s.d.  

We need more measurements in hydrogen  

Hydrogen 

● no straightforward systematic explanation identified, but ~5σ deviation 
results from summing many ~2σ effects

plot courtesy E. Hessels, proton radius workshop 2014
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Experimental landscape: historical e-p extractions
Proton Radius Puzzle 57

muonic
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Figure 1: Proton radius determinations over time. Electronic measurements seem

to settle around rp=0.88 fm, whereas the muonic hydrogen value [1,2] is at 0.84 fm.

Values are (from left to right): Orsay [10], Stanford [11], Saskatoon [12, 13],

Mainz [14] (all in blue) are early electron scattering measurements. Recent new

scattering measurements are from MAMI [4] and Jlab [15]. The green and cyan

points denote various reanalyses of the world electron scattering data [16–21]. The

red symbols originate from laser spectroscopy of atomic hydrogen and advances

in hydrogen QED theory (see [3] and references therein). The green and red

points in the year 2003 denote the reanalysis of the world electron scattering

data [19] and the world data from hydrogen and deuterium spectroscopy which

have determined the value of rp in the CODATA adjustments [3, 22] since the

2002 edition.

From Pohl et al., Ann.Rev.Nucl.Part.Sci. 63, 175
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