Introduction to High-Energy Neutrino Astronomy John Beacom, The Ohio State University

The Ohio State University's Center for Cosmology and AstroParticle Physics

Neutrino Cosmology and Astronomy

Photons Neutrinos

cosmo: Big Bang relics "detected" by BBN, CMB

astro: stellar processes
Sun precisely measured
Supernova 1987A detected

astro: galactic processes
IceCube discovered what ???

astro: cosmogenic processes
GZK flux near detection

First Goal: New Astrophysics

What happens deep inside astrophysical systems? Use knowledge of subatomic physics ... listen to theorists

Example successes: solar and supernova neutrinos Example searches: GRB neutrinos; CR sources in MW

Second Goal: New Particle Physics

What are the properties of familiar and of unmet particles? Use knowledge of astrophysics ... listen to theorists

Example successes: number of flavors; neutrino mass is small Example searches: neutrino exotica; dark matter

Third Goal: New Surprises

What haven't we thought of? Develop flexible, powerful searches ... don't listen to theorists

Example successes: neutrino mixing; cosmic ray anisotropies Example searches: unknown unknowns!

Impossible? High-Energy Neutrino Astronomy

Requires: sources that reach high energies sources that are luminous sources of different types particles that can reach us particles that can point back particles that can be detected results that can be understood

Plan of the Talk

✓ Goals of neutrino cosmology and astronomy

High-energy astrophysical neutrinos must exist

They are detectable (theorists' verse)

They are detectable (experimentalists' verse)

Now what? (duet)

Neutrino astronomy is happening

HE astrophysical neutrinos must exist

Energetic And Luminous CR Sources Exist

Charged cosmic rays first detected 100 years ago

protons

electrons and positrons

nuclei

Cosmic rays produced with high energies (up to 10^{20} eV) and high densities ($U_{CR} \sim U_{starlight}$ in MW), but do not point back

Sources assumed astrophysical, but may also be exotic

Cosmic Rays Inevitably Make Secondaries

Hadronic mechanism

$$p + p \rightarrow p + p + \pi^{0}, p + n + \pi^{+}$$

$$\pi^{0} \rightarrow 2\gamma, \pi^{\pm} \rightarrow e^{\pm} + 3v$$

Leptonic mechanism

$$e^- + \gamma \rightarrow \gamma + e^-$$

Nuclear (A*) mechanism

$$A' + \gamma \rightarrow A^* + X$$

$$A^* \rightarrow A + \gamma \quad \text{and some} \quad v$$

Exotic mechanisms

unstable SM particle decays
$$\longrightarrow \gamma$$
 , v

Production always makes a mess; propagation makes more

Energetic And Luminous Gamma Sources Exist

Wide variety of point and diffuse sources, high fluxes

Energies up to ~ 100 TeV

Gammas do point, but they do attenuate, don't reveal parents

Energetic And Luminous Neutrino Sources Exist

Speculation about high-energy neutrino astronomy since 1960s (Reines; Ruderman; Markov; Pontecorvo; Berezinsky; etc.)

Now on a firm footing due to vastly better astrophysical data and decisive evidence from gamma-ray astronomy

Leptonic sources: neutrino fluxes are zero

Other sources: neutrino, gamma fluxes comparable

Large neutrino fluxes expected from a variety of diffuse, point, and transient sources in the Milky Way and cosmos ... and neutrino-bright surprises are possible

We Need All Three Messengers

cosmic rays	gamma rays	neutrinos
energetic	direct	revealing
divertable	stoppable	untrustworthy?

John Beacom, The Ohio State University

Nu@Fermilab, July 2015

But Neutrinos Are The Best

deep insides of sources, not the outsides

initial energies, not reduced by thermalization

Neutrinos reveal:

original timescales, not delayed by diffusion

distant sources, not attenuated en route

source directions, not blurred by deflection

The only thing is that neutrino signal detection is hard

HE astrophysical neutrinos are detectable (theorists' verse)

First Difficulty: Measuring Signals

$$v_e + n \rightarrow e^- + p$$

Electromagnetic showers

$$|v_{\mu} + n \rightarrow \mu^- + p|$$

Muon tracks (long!)

$$|v_{\tau} + n \rightarrow \tau^- + p|$$

Hadronic showers

Plus charge conjugates, plus neutral-current channels

Small cross section requires big detectors; cost dictates sparse instrumentation

Energy: ~ 10% if contained

Flavor: good

Direction: $\sim 1^{\circ}$ (muons), $\sim 10^{\circ}$ (showers) Time: excellent

IceCube Is Big Enough To Succeed

 $\mbox{N}_{\mbox{events}} \sim 4\pi$. $N_{\mbox{targets}} \ \sigma$. T . $\Phi \sim 4\pi$. $A_{\mbox{effective}}$. T . Φ

Volume ~ 1 km³

 $A_{\text{effective}} \sim 1 \text{ m}^2 \text{ at } 100 \text{ TeV}$

For many sources, ~ 1 km³ is the minimum required

Second Difficulty: Rejecting Backgrounds

Atmospheric muons: enormous but greatly reducible background

Atmospheric neutrinos: big but reducible (Schonert+ 2008) foreground

IceCube 2011:

Atm. nu measured up to ~ 200 TeV

Astro. nu strong limits at higher energies

Cascades Predicted To Suppress Backgrounds

Beacom+Candia, "Shower Power" (2004): First to show; largely ignored

Key point is using measurable energy instead of neutrino energy Cascade signal emerges at energy ~ 10 times lower than track signal HE astrophysical neutrinos are detectable (experimentalists' verse)

IceCube Search For UHE Neutrinos

Sensitivity to neutrinos from ultra-high-energy cosmic rays

Signal is very bright events induced by all neutrino flavors

Backgrounds are due to muons and are low

IceCube 2011 upper limit

Who Ordered These?

Great fortune in finding these events in this search (2013)

Many surprised by the details of the results

Now what? (duet)

Demystifying The PeV Cascades

What can you learn from two events? A lot. (Laha+ 2013)

Mostly reasonable (IceCube has since changed inputs)

Less (Energy) Is More (Events)

Quickest check of signal is at lower energies (Laha+ 2013)

Cascades have much lower backgrounds than muon tracks

Now Comes The Flood

New (2014) IceCube TeV-PeV search, using 2010—2013 data

My opinion:
focus above
100 TeV on
"Clean Dozen"
events with
negligible
atmospheric

backgrounds

Conservative analysis: 37 candidates, \sim 15 background, 5.7 σ

What Does The Energy Spectrum Tell Us?

Sum of cascade (all flavors), starting track (muon) channels

True significance is *much higher* than reported

For "Clean Dozen" events, ignore the backgrounds shown because cascade channel dominates

Easy to see (!): astrophysical neutrinos with spectrum ~ E⁻²

What Does The Angular Distribution Tell Us?

First HE neutrino skymap; some caveats for interpretation

Isolating
"Clean
Dozen"
changes
picture

Easy to see (!): sources mostly isotropic, extragalactic

Certainties, Probabilities, Mysteries

Signal origin: definitely observed extraterrestrial neutrinos likely no UHE, Galactic, or exotic sources

Energy spectrum: $E^2 \Phi \sim 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ shape E^{-2} with cutoff or a bit steeper

Angular distribution: likely isotropic with Earth attenuation no obvious clustering or correlations

Flavor ratios: maybe consistent with 1:1:1, but a little weird where are the muon tracks at high energy?

Time distribution: appears to be constant, not bursty

What's Next?

IceCube unblinded the fourth year of data

Will soon update previous analyses with more exposure A handful of events at very high energies could be decisive

Look for new analyses that separate cascades and tracks

Cascades have much better signal-to-background than tracks Beacom and Candia (2004); Laha, Beacom, et al. (2014)

Look for new analyses to probe Milky Way point sources

Combined with gamma-ray data, one event could mean detection Kistler and Beacom (2006); Beacom and Kistler (2007)

Look for leverage from new HAWC gamma-ray results

First powerful synoptic survey for very high energy gamma rays Sees mostly Northern hemisphere, well-matched to IceCube

The Promise of Patience

Astrophysics: *Hadronic luminosity?*

Dark Matter: Coupling to SM?

Neutrinos: New nu properties

Ex.: Star Formation History

Ex.: DM Annihilation

Ex.: nu+nu scattering

Loeb, Waxman 2006 countless others

Beacom, Bell, Mack 2006 IceCube 2014

Ng, Beacom 2014 loka, Murase 2014 Cherry, Friedland, Shoemaker 2014

Neutrino astronomy is happening

Summary: High-Energy Neutrino Astronomy

Great unsolved mysteries in high-energy astronomy:

Origin of cosmic rays, nature of gamma ray sources, particle properties of dark matter and neutrinos, etc.

Cannot give decisive answers without neutrinos:

Microscopic processes and energies, fast timescales and extreme interiors of sources, possible surprises, etc.

IceCube has pioneered the high-energy neutrino sky:

First discovery already sheds new light on astrophysics, dark matter, neutrino properties, etc.

Exciting prospects to continue and make new discoveries:

Besides running IceCube longer, crucial role for KM3NeT, IceCube extensions, and experiments like HAWC, etc.

Neutrino Astrophysics Must Be Broad

MeV: Nuclear-Physics Sources

Transient sources, e.g., supernova bursts
Steady sources, e.g., backgrounds from supernovae
Possible sources from dark matter decay or annihilation

TeV: Particle-Physics Sources

Transient sources, e.g., AGN and GRBs
Steady sources, e.g., Milky Way sources, SB galaxies
Promising sources from dark matter annihilation or decay

EeV: Extreme-Physics Sources

Certain fluxes from UHECR and propagation products
Likely fluxes directly from their accelerators
Possible sources from supermassive particle decays

Must connect γ , ν , CR to each other, physics, and astronomy

Center for Cosmology and AstroParticle Physics

The Ohio State University's Center for Cosmology and AstroParticle Physics

Columbus, Ohio: 1 million people (city), 2 million people (city+metro)

Ohio State University: 56,000 students

Physics: 55 faculty, Astronomy: 20 faculty

CCAPP: 20 faculty, 10 postdocs from both departments

Placements: In 2014 alone, 12 CCAPP alumni got permanent-track jobs

ccapp.osu.edu

Recent faculty hires: Linda Carpenter, Chris Hirata, Annika Peter

Incoming faculty hires: Adam Leroy, Laura Lopez

Recent PD hires: M. Bustamante, A. Nierenberg, A. Ross, A. Zolotov

Incoming PD hires: K. Auchettl, J. Hanson, T. Linden

CCAPP Postdoctoral Fellowship applications welcomed in Fall