Discrete Flavor Symmetries and Origin of CP Violation

Mu-Chun Chen, University of California at Irvine

Nu@Fermilab, July 23, 2015
Work done in collaboration with
Maximilian Fallbacher, K.T. Mahanthappa, Michael Ratz, Andreas Trautner, Nucl. Phys. B883 (2014) 267 K.T. Mahanthappa, Phys. Lett. B681, 444 (2009)

CP Violation in Nature

- CP violation: required to explain matter-antimatter asymmetry
- So far observed only in flavor sector
- SM: CKM matrix for the quark sector
- experimentally established $\delta_{\text {скм }}$ as major source of CP violation
- not sufficient for observed cosmological matter-antimatter asymmetry
- Search for new source of CP violation:
- CP violation in neutrino sector
- if found \Rightarrow phase in PMNS matrix
- Discrete family symmetries:
- suggested by large neutrino mixing angles
- neutrino mixing angles from group theoretical CG coefficients

Discrete (family) symmetries \Leftrightarrow Physical CP violation

Origin of CP Violation

- CP violation \Leftrightarrow complex mass matrices

$$
\bar{U}_{R, i}\left(M_{u}\right)_{i j} Q_{L, j}+\bar{Q}_{L, j}\left(M_{u}^{\dagger}\right)_{j i} U_{R, i} \xrightarrow{\text { eP }} \bar{Q}_{L, j}\left(M_{u}\right)_{i j} U_{R, i}+\bar{U}_{R, i}\left(M_{u}\right)_{i j}^{*} Q_{L, j}
$$

- Conventionally, CPV arises in two ways:
- Explicit CP violation: complex Yukawa coupling constants Y
- Spontaneous CP violation: complex scalar VEVs <h>

Origin of CP Violation

- CP violation \Leftrightarrow complex mass matrices

$$
\bar{U}_{R, i}\left(M_{u}\right)_{i j} Q_{L, j}+\bar{Q}_{L, j}\left(M_{u}^{\dagger}\right)_{j i} U_{R, i} \xrightarrow{\text { eP }} \bar{Q}_{L, j}\left(M_{u}\right)_{i j} U_{R, i}+\bar{U}_{R, i}\left(M_{u}\right)_{i j}^{*} Q_{L, j}
$$

- Conventionally, CPV arises in two ways:
- Explicit CP violation: complex Yukawa coupling constants Y
- Spontaneous CP violation: complex scalar VEVs <h>

Fermion mass and hierarchy problem $" \rightarrow$ Many free parameters in the Yukawa sector

A Novel Origin of CP Violation

- Reduce the number of parameters \Rightarrow non-Abelian discrete family symmetry
- e.g. A_{4} family symmetry \Rightarrow TBM mixing from CG coefficients
- Complex CG coefficients in certain discrete groups \Rightarrow explicit CP violation
- real Yukawa couplings, real Higgs VEV
- CPV in quark and lepton sectors purely from complex CG coefficients
- No additional parameters needed \Rightarrow extremely predictive model!

CG coefficients in non-Abelian discrete symmetries \Rightarrow relative strengths and phases in entries of Yukawa matrices \Rightarrow mixing angles and phases (and mass hierarchy)

A Novel Origin of CP Violation

Basic idea

Discrete
symmetry \boldsymbol{G}

- Scalar potential: if Z_{3} symmetric $\Rightarrow\left\langle\Delta_{1}\right\rangle=\left\langle\Delta_{2}\right\rangle=\left\langle\Delta_{3}\right\rangle \equiv\langle\Delta\rangle$ real
- Complex effective mass matrix: phases determined by group theory

$$
M=\left(\begin{array}{cc}
\mathrm{L}_{1} & \left.\mathrm{~L}_{2}\right) \\
\mathrm{C}_{11^{2}} & \mathrm{C}_{21}{ }^{1} \\
\mathrm{C}_{12^{1}} & \mathrm{C}_{22^{3}}
\end{array}\right) Y\langle\Delta\rangle \underset{\text { T }}{\substack{\text { D}}}
$$

Physical CP vs. Generalized CP Transformations

complex CGs \Rightarrow G and physical CP transformations do not commute

Generalized CP transformation:

$$
\Phi(x) \stackrel{\widetilde{C P}}{\longmapsto} U_{\mathrm{CP}} \Phi_{\uparrow}^{*}(\mathcal{P} x) \quad \begin{gathered}
\text { contains all } \\
\text { reps in model }
\end{gathered}
$$

Necessary Consistency condition:
Holthausen, Lindner, Schmidt (2013)

$$
\rho(u(g))=U_{\mathrm{CP}} \rho(g)^{*} U_{\mathrm{CP}}^{\dagger} \quad \forall g \in G
$$

Physical CP vs. Generalized CP Transformations

complex CGs $\Rightarrow \mathrm{G}$ and physical CP transformations do not commute

Generalized CP transformation:

$$
\Phi(x) \stackrel{\widetilde{C^{P}}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x)
$$

Necessary Consistency condition:
Holthausen, Lindner, Schmidt (2013)

$$
\rho(u(g))=U_{\mathrm{CP}} \rho(g)^{*} U_{\mathrm{CP}}^{\dagger} \quad \forall g \in G
$$

However, GCP may not correspond to physical CP transformation
\Rightarrow for GCP = physical CP: more stringent consistency condition

Physical CP vs. Generalized CP Transformations

- generalized CP transformation

$$
\Phi(x) \stackrel{\widetilde{C P}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x)
$$

- Necessary consistency condition

$$
\rho(u(g))=U_{\mathrm{CP}} \rho(g)^{*} U_{\mathrm{CP}}{ }^{\dagger} \quad \forall g \in G \quad \text { Hothausen, Lindner, Schmidt (2013) }
$$

- Necessary and sufficient consistency condition M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz,
A. Trautner (2014)

$$
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i
$$

Physical CP vs. Generalized CP Transformations

- generalized CP transformation

$$
\Phi(x) \stackrel{\widetilde{C P}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x)
$$

- Necessary consistency condition

$$
\rho(u(g))=U_{\mathrm{CP}} \rho(g)^{*} U_{\mathrm{CP}}^{\dagger} \quad \forall g \in G \quad \text { Holthausen, Lindner, Schmidt (2013) }
$$

- Necessary and sufficient consistency condition M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

$$
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i
$$

u has to be a class-inverting, involuntary automorphism of G \Rightarrow non-existence of such automorphism in certain groups \Rightarrow explicit physical CP violation

Three Types of Finite Groups

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

A Novel Origin of CP Violation

- For discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \Leftrightarrow Physical CP violation

CP Violation from Group Theory!

Discrete (flavor)
symmetry \boldsymbol{G}
there is a CP basis in which all CG's are real

For further insights, see, M. Fallbacher,
A. Trautner, NPB (2015)

Examples

> M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Type I: all odd order non-Abelian groups

group	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	T_{7}	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$
SG	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$

- Type IIA: dihedral and all Abelian groups

group	S_{3}	Q_{8}	A_{4}	$\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}$	$\mathrm{~T}^{\prime}$	S_{4}	A_{5}
SG	$(6,1)$	$(8,4)$	$(12,3)$	$(24,1)$	$(24,3)$	$(24,12)$	$(60,5)$

- Type IIB

Example for a type I group:

$\Delta(27)$

- decay asymmetry in a toy model

- prediction of CP violating phase from group theory

Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Field content

fermions					
field	S	X	Y	Ψ	Σ
$\Delta(27)$	$\mathbf{1}_{0}$	$\mathbf{1}_{1}$	$\mathbf{1}_{3}$	$\mathbf{3}$	$\mathbf{3}$
$U(1)$	$q_{\Psi}-q_{\Sigma}$	$q_{\Psi}-q_{\Sigma}$	0	q_{Ψ}	q_{Σ}

- Interactions

$$
q_{\Psi}-q_{\Sigma} \neq 0
$$

$$
\mathscr{L}_{\text {toy }}=F^{i j} S \bar{\Psi}_{i} \Sigma_{j}+G^{i j} X \bar{\Psi}_{i} \Sigma_{j}+H_{\Psi}^{i j} Y \bar{\Psi}_{i} \Psi_{j}+H_{\Sigma}^{i j} Y \bar{\Sigma}_{i} \Sigma_{j}+\text { h.c. }
$$

"flavor" structures determined by (complex) CG coefficients

arbitrary coupling constants:
$\mathrm{f}, \mathrm{g}, \mathrm{h}_{\psi}, \mathrm{h}_{\Sigma}$

Toy Model based on $\Delta(27)$

> M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Particle decay $Y \rightarrow \bar{\Psi} \Psi$
interference of

with

Decay Asymmetry

> M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\begin{aligned}
\varepsilon_{Y \rightarrow \bar{\Psi} \Psi} & =\frac{\Gamma(Y \rightarrow \bar{\Psi} \Psi)-\Gamma\left(Y^{*} \rightarrow \bar{\Psi} \Psi\right)}{\Gamma(Y \rightarrow \bar{\Psi} \Psi)+\Gamma\left(Y^{*} \rightarrow \bar{\Psi} \Psi\right)} \\
& \propto \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[\operatorname{tr}\left(F^{\dagger} H_{\Psi} F H_{\Sigma}^{\dagger}\right)\right]+\operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\operatorname{tr}\left(G^{\dagger} H_{\Psi} G H_{\Sigma}^{\dagger}\right)\right] \\
& =|f|^{2} \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right] . \\
& \bigwedge_{\text {one-loop integral } I_{S}=I\left(M_{S}, M_{Y}\right)}^{\text {one-loop integral } I_{X}=I\left(M_{X}, M_{Y}\right)}
\end{aligned}
$$

- properties of ε
- invariant under rephasing of fields
- independent of phases of f and g
- basis independent

Decay Asymmetry

> M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\varepsilon_{Y \rightarrow \overline{\Psi \Psi}}=|f|^{2} \operatorname{Im}\left[I_{S}\right] \quad \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \quad \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right]
$$

- cancellation requires delicate adjustment of relative phase $\varphi:=\arg \left(h_{\Psi} h_{\Sigma}^{*}\right)$
- for non-degenerate M_{S} and $M_{X}: \quad \operatorname{Im}\left[I_{S}\right] \neq \operatorname{Im}\left[I_{X}\right]$
- phase φ unstable under quantum corrections
- for $\operatorname{Im}\left[I_{S}\right]=\operatorname{Im}\left[I_{X}\right] \&|f|=|g|$
- phase φ stable under quantum corrections
- relations cannot be ensured by an outer automorphism (i.e. GCP) of $\Delta(27)$
- require symmetry larger than $\Delta(27)$

model based on $\Delta(27)$ violates CP!

Spontaneous CP Violation with Calculable CP Phase

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

field	X	Y	Z	Ψ	Σ	ϕ
$\Delta(27)$	$\mathbf{1}_{1}$	$\mathbf{1}_{3}$	$\mathbf{1}_{8}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{0}$
$\mathrm{U}(1)$	$2 q_{\Psi}$	0	$2 q_{\Psi}$	q_{Ψ}	$-q_{\Psi}$	0

$\Delta(27) \subset S G(54,5):\left\{\begin{array}{lll}(X, Z) & : & \text { doublet } \\ \left(\Psi, \Sigma^{C}\right) & : & \text { hexaplet } \\ \phi & : & \text { non-trivial 1-dim. representation }\end{array}\right.$
non-trivial $\langle\phi\rangle$ breaks $\operatorname{SG}(54,5) \rightarrow \Delta(27)$
allowed coupling leads to mass splitting $\mathscr{L}_{\text {toy }}^{\phi} \supset M^{2}\left(|X|^{2}+|Z|^{2}\right)+\left[\frac{\mu}{\sqrt{2}}\langle\phi\rangle\left(|X|^{2}-|Z|^{2}\right)+\right.$ h.c. $]$
\Rightarrow CP asymmetry with calculable phases

Group theoretical origin of CP violation!

M.-C.C., K.T. Mahanthappa (2009)

CP-Like Symmetries

outer automorphism u_{5}

$$
X \rightarrow X^{*}, \quad Z \rightarrow Z^{*}, \quad Y \rightarrow Y^{*}, \quad \Psi \rightarrow U_{u_{5}} \Sigma \quad \& \quad \Sigma \rightarrow U_{u_{5}} \Psi
$$

$$
U_{u_{5}}=\left(\begin{array}{ccc}
0 & 0 & \omega^{2} \\
0 & 1 & 0 \\
\omega & 0 & 0
\end{array}\right)
$$

does not lead to a vanishing decay asymmetry
\Leftrightarrow in general, imposing an outer automorphism as a symmetry does not lead to physical CP conservation!
\Leftrightarrow CP-like symmetry

Summary

Summary

- NOT all outer automorphisms correspond to physical CP transformations
- Condition on automorphism for physical CP transformation

$$
\rho_{r_{i}}(u(g))=U_{r_{i}} \rho_{r_{i}}(g)^{*} U_{r_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i
$$

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

Summary

- For discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \Leftrightarrow physical CP violation

CP Violation from Group Theory!

Backup Slides

CP Transformation

- Canonical CP transformation

- Generalized CP transformation

Generalized CP Transformation

setting w/ discrete symmetry G

G and CP transformations do not commute

generalized CP transformation
Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)
invariant contraction/coupling in A_{4} or T^{\prime}

$$
\left[\phi_{\mathbf{1}_{2}} \otimes\left(x_{\mathbf{3}} \otimes y_{\mathbf{3}}\right)_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi\left(x_{1} y_{1}+\omega^{2} x_{2} y_{2}+\omega x_{3} y_{3}\right)
$$

$$
\omega=\mathrm{e}^{2 \pi i / 3}
$$

canonical CP transformation maps $A_{4} / \mathrm{T}^{\prime}$ invariant contraction to something non-invariant
\Leftrightarrow need generalized CP transformation $\widetilde{C_{P}}: \phi \stackrel{\widetilde{C_{P}}}{\longmapsto} \phi^{*}$ as usual but

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \xrightarrow{\widetilde{C P}}\left(\begin{array}{l}
x_{1}^{*} \\
x_{3}^{*} \\
x_{2}^{*}
\end{array}\right) ~ \&\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \xrightarrow{\stackrel{\widetilde{C P}}{\rightleftarrows}}\left(\begin{array}{l}
y_{1}^{*} \\
y_{3}^{*} \\
y_{2}^{*}
\end{array}\right)
$$

The Bickerstaff-Damhus automorphism (BDA)

- Bickerstaff-Damhus automorphism (BDA) u

Bickerstaff, Damhus (1985)

$$
\begin{gather*}
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i \\
\text { unitary \& symmetric }
\end{gather*}
$$

- BDA vs. Clebsch-Gordan (CG) coefficients

Constraints on generalized CP transformations

generalized CP transformation

$$
\Phi(x) \stackrel{\widetilde{C P}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x)
$$

(1) consistency condition

$$
\rho(u(g))=U_{\mathrm{CP}} \rho(g)^{*} U_{\mathrm{CP}^{\dagger}}^{\dagger} \quad \forall g \in G
$$

further properties: м.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

$$
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{r_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i
$$

- u has to be class-inverting
- in all known cases, u is equivalent to an automorphism of order two

bottom-line:

u has to be a class-inverting (involutory) automorphism of G

Twisted Frobenius-Schur Indicator

- How can one tell whether or not a given automorphism is a BDA?
- Frobenius-Schur indicator:

$$
\begin{aligned}
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right):=\frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}\left(g^{2}\right)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left[\rho_{\boldsymbol{r}_{i}}(g)^{2}\right] \\
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right)= \begin{cases}+1, & \text { if } \boldsymbol{r}_{i} \text { is a real representation, } \\
0, & \text { if } \boldsymbol{r}_{i} \text { is a complex representation, } \\
-1, & \text { if } \boldsymbol{r}_{i} \text { is a pseudo-real representation. }\end{cases}
\end{aligned}
$$

- Twisted Frobenius-Schur indicator Bickerstaft, Damhus (1985); Kawanaka, Matsuyama (1990)

$$
\begin{aligned}
& \mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right)=\frac{1}{|G|} \sum_{g \in G}\left[\rho_{\boldsymbol{r}_{i}}(g)\right]_{\alpha \beta}\left[\rho_{\boldsymbol{r}_{i}}(u(g))\right]_{\beta \alpha} \\
& \mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right)= \begin{cases}+1 \quad \forall i, & \text { if } u \text { is a BDA, } \\
+1 \text { or }-1 \quad \forall i, & \text { if } u \text { is class-inverting and involutory, } \\
\text { different from } \pm 1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

CP Conservation vs Symmetry Enhancement

replace $S \sim \mathbf{1}_{0}$ by $Z \sim \mathbf{1}_{8} \curvearrowright$ interaction

$$
\mathscr{L}_{\text {toy }}^{Z}=g^{\prime}\left[Z_{\mathbf{1}_{8}} \otimes(\bar{\Psi} \Sigma)_{\mathbf{1}_{4}}\right]_{\mathbf{1}_{0}}+\text { h.c. }=\left(G^{\prime}\right)^{i j} Z \bar{\Psi}_{i} \Sigma_{j}+\text { h.c. }
$$

$$
G^{\prime}=g^{\prime}\left(\begin{array}{ccc}
0 & 0 & \omega^{2} \\
1 & 0 & 0 \\
0 & \omega & 0
\end{array}\right)
$$

and leads to new interference diagram

Some Outer Automorphisms of $\Delta(27)$

- sample outer automorphisms of $\Delta(27)$

$$
\begin{aligned}
& u_{1}: \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{2}, \mathbf{1}_{4} \leftrightarrow \mathbf{1}_{5}, \mathbf{1}_{7} \leftrightarrow \mathbf{1}_{8}, \mathbf{3} \rightarrow U_{u_{1}} \mathbf{3}^{*} \\
& u_{2}: \\
& \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{4}, \mathbf{1}_{2} \leftrightarrow \mathbf{1}_{8}, \mathbf{1}_{3} \leftrightarrow \mathbf{1}_{6}, \mathbf{3} \rightarrow U_{u_{2}} \mathbf{3}^{*} \\
& u_{3}: \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{8}, \mathbf{1}_{2} \leftrightarrow \mathbf{1}_{4}, \mathbf{1}_{5} \leftrightarrow \mathbf{1}_{7}, \mathbf{3} \rightarrow U_{u_{3}} \mathbf{3}^{*} \\
& u_{4}: \mathbf{1}_{\leftrightarrow} \leftrightarrow \mathbf{1}_{7}, \mathbf{1}_{2} \leftrightarrow \mathbf{1}_{5}, \mathbf{1}_{3} \leftrightarrow \mathbf{1}_{6}, \mathbf{3} \rightarrow U_{u_{4}} \mathbf{3}^{*} \\
& u_{5}:
\end{aligned} \mathbf{1}_{i} \leftrightarrow \mathbf{1}_{i}^{*}, \mathbf{3} \rightarrow U_{u_{5}} \mathbf{3},
$$

- twisted Frobenius-Schur indicators

\boldsymbol{R}	$\mathbf{1}_{0}$	$\mathbf{1}_{1}$	$\mathbf{1}_{2}$	$\mathbf{1}_{3}$	$\mathbf{1}_{4}$	$\mathbf{1}_{5}$	$\mathbf{1}_{6}$	$\mathbf{1}_{7}$	$\mathbf{1}_{8}$	$\mathbf{3}$	$\overline{\mathbf{3}}$
$\mathrm{FS}_{u_{1}}(\boldsymbol{R})$	1	1	1	0	0	0	0	0	0	1	1
$\mathrm{FS}_{u_{2}}(\boldsymbol{R})$	1	0	0	1	0	0	1	0	0	1	1
$\mathrm{FS}_{u_{3}}(\boldsymbol{R})$	1	0	0	0	0	1	0	1	0	1	1
$\mathrm{FS}_{u_{4}}(\boldsymbol{R})$	1	0	0	1	0	0	1	0	0	1	1
$\mathrm{FS}_{u_{5}}(\boldsymbol{R})$	1	1	1	1	1	1	1	1	1	0	0

- none of the u_{i} maps all representations to their conjugates
- however, it is possible to impose CP in (non-generic) models, where only a subset of representations are present, e.g. $\left\{\boldsymbol{r}_{i}\right\} \subset\left\{\mathbf{1}_{0}, \mathbf{1}_{5}, \mathbf{1}_{7}, \mathbf{3}, \overline{\mathbf{3}}\right\}$
- CP conservation possible in non-generic models
- e.g. some well-known multiple Higgs model Branco, Gerard, and Grimus (1984)

CP Conservation vs Symmetry Enhancement

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
replace $S \sim \mathbf{1}_{0}$ by $Z \sim \mathbf{1}_{8} \curvearrowright$ interaction

$$
\mathscr{L}_{\text {toy }}^{Z}=g^{\prime}\left[Z_{\mathbf{1}_{8}} \otimes(\bar{\Psi} \Sigma)_{\mathbf{1}_{4}}\right]_{\mathbf{1}_{0}}+\text { h.c. }=\left(G^{\prime}\right)^{i j} Z \bar{\Psi}_{i} \Sigma_{j}+\text { h.c. }
$$

\Rightarrow different contribution to decay asymmetry: $\varepsilon_{Y \rightarrow \bar{\Psi} \Psi}^{S} \rightarrow \varepsilon_{Y \rightarrow \bar{\Psi} \Psi}^{Z}$
total CP asymmetry of the Y decay vanishes if $\begin{cases}\text { (i) } & M_{Z}=M_{X} \\ \text { (ii) } & |g|=\left|g^{\prime}\right| \\ \text { (iii) } & \varphi=0\end{cases}$
relations (i)—(iii) can be due to an outer automorphism

Example for a type II A group: T'

- CP basis and its complications
- generalized CP transformation

(Generalized) CP Transformation for T^{\prime}

unique outer automorphism

$$
u:(S, T) \rightarrow\left(S^{3}, T^{2}\right) \quad \curvearrowright\left\{\begin{array}{rll}
\mathbf{1}_{i} & \rightarrow & U_{\mathbf{1}_{i}} \mathbf{1}_{i}{ }^{*} \\
\mathbf{2}_{i} & \rightarrow & U_{\mathbf{2}_{i}} \mathbf{2}_{i}^{*} \\
\mathbf{3} & \rightarrow & U_{\mathbf{3}} \mathbf{3}^{*}
\end{array}\right.
$$

twisted Frobenius-Schur indicators

\boldsymbol{R}	$\mathbf{1}_{0}$	$\mathbf{1}_{1}$	$\mathbf{1}_{2}$	$\mathbf{2}_{0}$	$\mathbf{2}_{1}$	$\mathbf{2}_{2}$	$\mathbf{3}$
$\mathrm{FS}_{u}(\boldsymbol{R})$	1	1	1	1	1	1	1

$\Leftrightarrow u$ is a Bickerstaff-Damhus automorphism
\Leftrightarrow there is a basis in which all Clebsch-Gordan coefficients are real
basis can been found e.g. in Ishimori, Kobayashi, Ohki, Shimizu, Okada, et al. (2010)
u defines a physical CP transformation
invariance of \mathscr{L} under u restricts the phases of the coupling coefficients

Issues with the CP basis and other bases

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

3 of T^{\prime} is a real representation
however, in many T^{\prime} bases (including the CP basis), $\mathbf{3}$ transforms with complex matrices
need to describe a real 3-plet by complex field(s) and impose 'Majorana-like condition' $\phi^{*}=U \phi$
with e.g. $U=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ in the 'Feruglio basis' "Fefo basis" (2001)
problems do not appear in the T' extension of the 'Ma basis' for A_{4}
A_{4} basis can be found in Ma and Rajasekaran (2001)
proper CP transformation

$$
\mathbf{1}_{i} \stackrel{\widetilde{C P}}{\longmapsto} \mathbf{1}_{i}{ }^{*}, \quad \mathbf{2}_{i} \stackrel{\widetilde{C^{\mathscr{P}}}}{\longmapsto} \mathbf{2}_{i}{ }^{*}, \quad \mathbf{3} \xrightarrow{\widetilde{C P}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \mathbf{3}^{*}
$$

Example for a type II B group: $\Sigma(72)$

- absence of CP basis but generalized CP transformation ensures physical CP conservation
- CP forbids couplings

Example of a type IIB group: $\Sigma(72)$

presentation of $\Sigma(72)$

$$
\begin{aligned}
& M^{4}=N^{4}=P^{3}=\left(M^{2} P^{-1}\right)^{2}=\mathbb{1}, \quad M^{2}=N^{2}, \quad M^{-1} N=N M \\
& P M P N^{-1} M P^{-1} N=\mathbb{1}, \quad N P M^{-1} P=M P N
\end{aligned}
$$

6 inequivalent irreducible representations: $\mathbf{1}_{0-3}, \mathbf{2}$ and $\mathbf{8}$
character table

	$C_{1 a}$	$C_{3 a}$	$C_{2 a}$	$C_{4 a}$	$C_{4 b}$	$C_{4 c}$
	1	8	9	18	18	18
$\Sigma(72)$	1	P	M^{2}	$M N$	N	M
$\mathbf{1}_{0}$	1	1	1	1	1	1
$\mathbf{1}_{1}$	1	1	1	1	-1	-1
$\mathbf{1}_{2}$	1	1	1	-1	1	-1
$\mathbf{1}_{3}$	1	1	1	-1	-1	1
$\mathbf{2}$	2	2	-2	0	0	0
$\mathbf{8}$	8	-1	0	0	0	0

Example of a type IIB group: $\Sigma(72)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
$\Sigma(72)$ is ambivalent, i.e. each conjugacy class contains with an element g also its inverse element g^{-1}
identity is already class-inverting (and involutory)
twisted Frobenius-Schur indicators of identity

\boldsymbol{R}	$\mathbf{1}_{0}$	$\mathbf{1}_{1}$	$\mathbf{1}_{2}$	$\mathbf{1}_{3}$	$\mathbf{2}$	$\mathbf{8}$
$\operatorname{FS}_{\mathrm{id}}(\boldsymbol{R})$	1	1	1	1	-1	1

\Leftrightarrow there is no CP basis no BDA
generalized CP transformation

$$
\begin{array}{r}
\mathbf{1}_{i} \xrightarrow{\widetilde{C P}} \mathbf{1}_{i}^{*}, \quad \mathbf{2} \xrightarrow{\widetilde{C P}} U_{2} \mathbf{2}^{*}, \mathbf{8} \xrightarrow{\widetilde{C_{P}}} \mathbf{8}^{*} \\
U_{\mathbf{2}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{array}
$$

Example of a type IIB group: $\Sigma(72)$

generalized CP transformation

$$
\mathbf{1}_{i} \xrightarrow{\widetilde{C P}} \mathbf{1}_{i}^{*}, \quad \mathbf{2} \xrightarrow{\widetilde{C P}} U_{\mathbf{2}} \mathbf{2}^{*}, \mathbf{8} \xrightarrow{\widetilde{C P}} \mathbf{8}^{*}
$$

imposing this CP transformation as a symmetry enlarges the flavor group by an additional \mathbb{Z}_{2} factor to $\Sigma(72) \times \mathbb{Z}_{2}$
additional symmetry generator acts trivially on all representations except for the 2 on which it acts as $V_{2}=U_{2} U_{2}^{*}=-\mathbb{1}$
this additional \mathbb{Z}_{2} forbids all terms which contain an odd number of fields in the representation 2 such as

$$
\mathscr{L} \supset c\left(\mathbf{2} \otimes(\mathbf{8} \otimes \mathbf{8})_{\mathbf{2}}\right)_{\mathbf{1}_{0}}
$$

unusal feature of type II B groups:

CP may forbid couplings rather than restricting the phases!

Summary

Three examples:
Type I group: $\Delta(27)$

- generic settings based on $\Delta(27)$ violate CP!
- spontaneous breaking of type II A group $\operatorname{SG}(54,5) \rightarrow \Delta(27)$ \curvearrowright prediction of CP violating phase from group theory!

Type II A group: T^{\prime}

- CP basis exists but has certain shortcomings
- advantageous to work in a different basis \& impose generalized CP transformation
- CP constrains phases of coupling coefficients

Type II B group: $\Sigma(72)$

- absence of CP basis but generalized CP transformation ensures physical CP conservation
- CP forbids couplings

