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(Light) sterile neutrinos: Framework 

•  Phenomenology framework: e.g. 3+1 
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Three neutrinos:     With sterile neutrinos: 
(e.g. NORMAL hierarchy) 

Δm2
32

Δm2
21

“just 3” “3+1” 

  ν4 is light enough (<mZ/2) to be produced in Z  
  decay 
 
 
 
 
 
 
 
 
 
 
 
 
 
  à νs does not couple to the Z (“sterile”) 

[Phys. Reports 427, 
257 (2006)] 

 
(Light) sterile neutrinos: Framework 

•  Phenomenology framework: e.g. 3+1 
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•  Mixing framework extended  
•  3x3 à (3+N)x(3+N) unitary mixing matrix 
•  New CP phases 
•  Matter effect must now account for lack of NC potential for νs 

 

•  More complex L/E signatures 
•  Oscillations at “short baselines” (Δm2 ~ 1 eV2 à L/E ~ 1km/GeV)  
•  Additional matter effect resonances? 
•  Additional parameter degeneracies at long baselines 

•  (Not in this talk:) Implications for early universe, astrophysical neutrino 
measurements, neutrinoless double beta decay…; opportunities for 
complementary measurements/constraints under certain assumptions 
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(Light) sterile neutrinos: Framework 

•  Phenomenology framework: e.g. 3+1, 3+2, 3+N, 1+3+1, … 

…
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(Light) sterile neutrinos: Framework 

•  Phenomenology framework: e.g. 3+1, 3+2, 3+N, 1+3+1, … 

…
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•  Constraints through oscillation signatures and unitarity 

•  Best/direct: L/E-dependent oscillations at “short baselines”.  
Can neglect contributions from solar and atmospheric oscillations 
(Δm2

21 ~ Δm2
31 ~ Δm2

32 ~ 0). 
 
E.g. 3+2:  

 
 
 
 
 

                        (neutrinos à antineutrinos)

•  Also:  
Flavor-dependent normalization effects at large L/E      
(sin2(1.27Δm2L/E) à ½) 
Modified oscillations + matter effect at long baselines (Δm2

21 ~ 0) 

 
(Light) sterile neutrinos: Sources of constraints 
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•  Experimental hints/evidence/anomalies 
•  LSND (νµàνe at L/E ~ 1 km/GeV) 
•  MiniBooNE (νµàνe and νµàνe at L/E ~ 1 km/GeV) 
•  Radioactive source calibration measurements at Gallium 

experiments (νeàνe at L/E <~ 1 km/GeV) 
•  Reactor (<100 m) short-baseline experiments?* (νeàνe at L/E ~ 1 km/

GeV) 
 

•  Can naturally accommodate light sterile neutrinos in theoretical 
frameworks of neutrino mass 

•  Interesting, rich phenomenology  
 

_ _ 

_ _ 

_ _ 

~
1-

4 
σ

 
(Light) sterile neutrinos: Motivation 

*Based on re-evaluation of absolute reactor neutrino fluxes. Interpretation as sterile neutrino oscillations is premature 
due to poorly understood flux systematic effects. Included here as a “best case scenario”. 

/ 
/ 
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•  This talk samples from past global fit analyses 
•  [1] J. Kopp, P. A.N. Machado, M. Maltoni, T. Schwetz (arxiv:1303.3011) 
•  [2] J. M. Conrad, C. M. Ignarra, G. K., M. H. Shaevitz, J. Spitz (arxiv:1207.4765) 
•  (Apologies to others) 

 
•  Qualitative results of above global fit analyses are in agreement 

•  Some (small) quantitative differences… but see “caveats” 

•  Reactor anomaly arbitrarily assumed to be real; if the anomaly goes 
away, situation is slightly worse (constraints from both νe and νµ 
disappearance) 

 

 
(Light) sterile neutrinos: Recent global fit results 
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Q1: Can all three signatures be explained by a simple (3+1) 
sterile neutrino hypothesis? 

Y 
Reactor short-baseline 
consistent with these values 

A: Yes… 

G. Karagiorgi, Nu@FNAL 



•  Bounds from reactor long- 
baseline and Solar+Kamland 
experiments as well as νe-C  
cross section measurements 
provide minimal constraints 

•  θ13 value from reactor long- 
baseline measurements  
insensitive to reactor anomaly 

•  νe disappearance data are  
consistent under 3+1 

•  No significant improvement  
from 3+1 to 3+2 

 

 
νe disappearance constraints: 3+1 

[1] 
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•  Some tension due to 
MiniBooNE neutrino mode results 
(upper bound) 

•  KARMEN constrains much of 
the higher Δm2 space 

•  ICARUS constrains the lower 
Δm2 range 

•  νe appearance data are  
consistent under 3+1 

•  Significant improvement in 
going to 3+2, due to CP violation 

 
  

 

 
νe appearance constraints: 3+1 

[1] 
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•  No signals evident in νµ 
disappearance searches 

•  CDHS and MiniBooNE constrain  
much of the higher Δm2 space 

•  MINOS and atmospheric results 
constrain the lower Δm2 range 

•  Much of the phase-space jointly  
preferred by νe appearance  
and disappearance data sets  
is strongly disfavored by (lack of) 
νµ disappearance 

•  Tension persists in 3+2, 1+3+1 
 

  
 

 
νµ disappearance constraints: 3+1 

[1] 
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[2] 

Compatibility (ν, ν) = 0.14% 

Compatibility (app, dis) = 0.013% 

_ 

Neutrino Antineutrino 

Appearance Disappearance 

Region excluded from  
νµ disappearance experiments 

 
(3+1) Global fits 
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•  All “signal” experiments consistent under 3+1, though some tension 
from lack of high-energy excess in MiniBooNE in neutrino mode 

•  Appearance experiments and disappearance experiments 
incompatible under 3+1, due to lack of νµ disappearance; 
appearance amplitude quadratically suppressed by disappearance 
amplitude  

 
•  Also, incompatibilities among neutrino and antineutrino experiments 
 

 
(3+1) Global fits: Summary 
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(3+2) and (1+3+1) Global fits 

•  Extending the fits to two Δm2 and 
one CP phase worsens 
compatibility 

 
•  Appearance-only data fit to 3+2 

and 1+3+1 significantly better 
over 3+1, but global fit still cannot 
accommodate MiniBooNE 
neutrino mode signal 
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(3+2) global best fit 

MiniBooNE  
neutrino excess 

MiniBooNE  
antineutrino excess 
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E.g. (3+2) Global fits 

(3+2) with CP violation cannot explain 
MiniBooNE low E excess, unless 

we discard disappearance constraints. 

[2] 



 
(3+2) and (1+3+1) Global fits 

•  Extending the fits to two Δm2 and 
one CP phase worsens 
compatibility 

 
•  Appearance-only data fit to 3+2 

and 1+3+1 significantly better 
over 3+1, but global fit still cannot 
accommodate MiniBooNE 
neutrino mode signal 

•  Tension persists between 
appearance and disappearance 
(overlap in projected space, not 
multi-dimensional space) 
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•  How do we quantify compatibility? 
•  A measure of how well the parameter regions preferred by different 

subsets of data overlap 

•  Unlike a χ2 test, the PG test avoids the problem that a possible 
disagreement between data sets becomes diluted by data points 
which are insensitive to the fit 

•  But, effect of nuisance parameters? [Collin, WIN’15] 
e.g., scaling background normalization can have an effect on ndfPG 

•  While instructive and useful in understanding the interplay of signals 
and null results, the reliability of the PG test for providing meaningful 
quantitative statements must be carefully validated! 

 

 
Caveats 
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[Maltoni & Schwetz, 2003] 

χ2
PG = χ2

min,all – Σ χ2
min,i 

 
compatibility, PG = prob(χ2

PG , ndfPG ) 



•  Need an unambiguous solution. 
This requires (probably multiple) definitive measurements. 
•  Appearance and disappearance 
•  Shape (L/E) information 

•  Experimental searches must carefully account for 
•  Simultaneous appearance and disappearance effects 
•  Neutrino energy reconstruction effects due to cross-section 

modeling uncertainties 

•  Global fits must carefully quantify (in)compatibilities 

•  As we advance toward precision measurements of the tree-neutrino 
model (e.g. at long-baselines), we must be aware of underlying 
assumptions.  
See, e.g., added parameter degeneracies in CPV measurements due 
to sterile neutrinos [Kayser; Gandhi, Masud, Prakash] 

 
(Light) sterile neutrinos: Moving forward 
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•  The existing landscape of observed 
SBL signals and null signatures is 
difficult to interpret as (3+N) sterile 
neutrino oscillations 
 

•  Awaiting new, definitive 
experimental results and/or new 
theoretical models 

 
•  Improving quantitative descriptions 

of global fits is a pressing issue 

 
Summary 
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