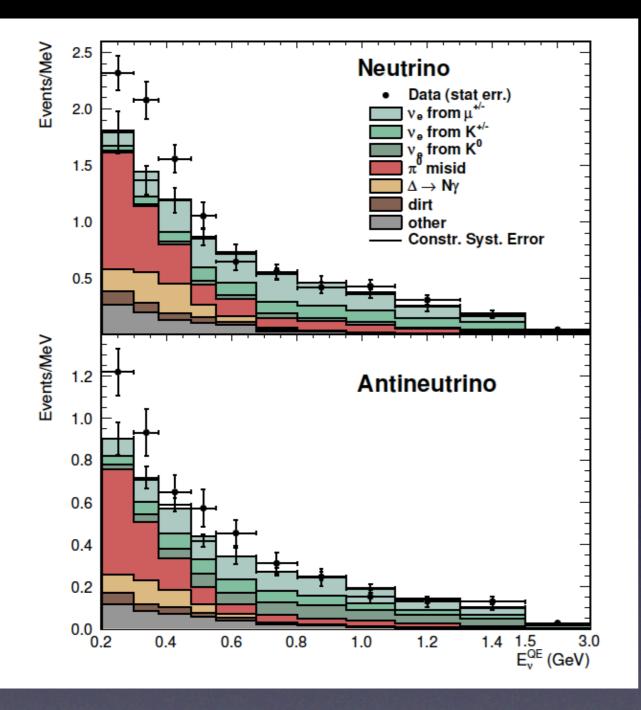
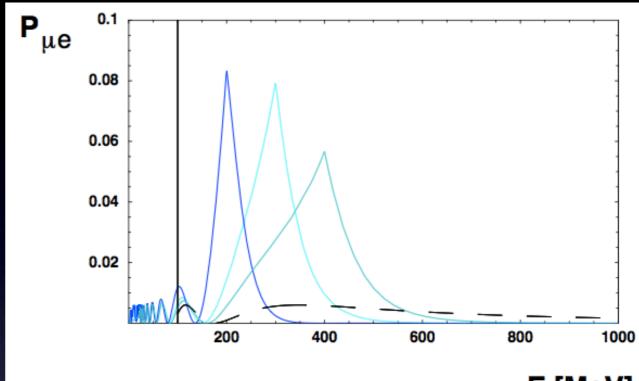
Sterile neutrino oscillations with altered dispersion relations

Heinrich Päs




Nu@Fermilab 2015

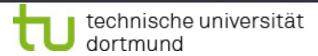
What is this talk about ?

E [MeV]

"Sterile-active neutrino oscillations and shortcuts in the extra dimension"

[HP, Pakvasa, Weiler, 2005]

[Conrad, Louis, Shaevitz, 2013]



What is this talk about ?

A very simple idea:

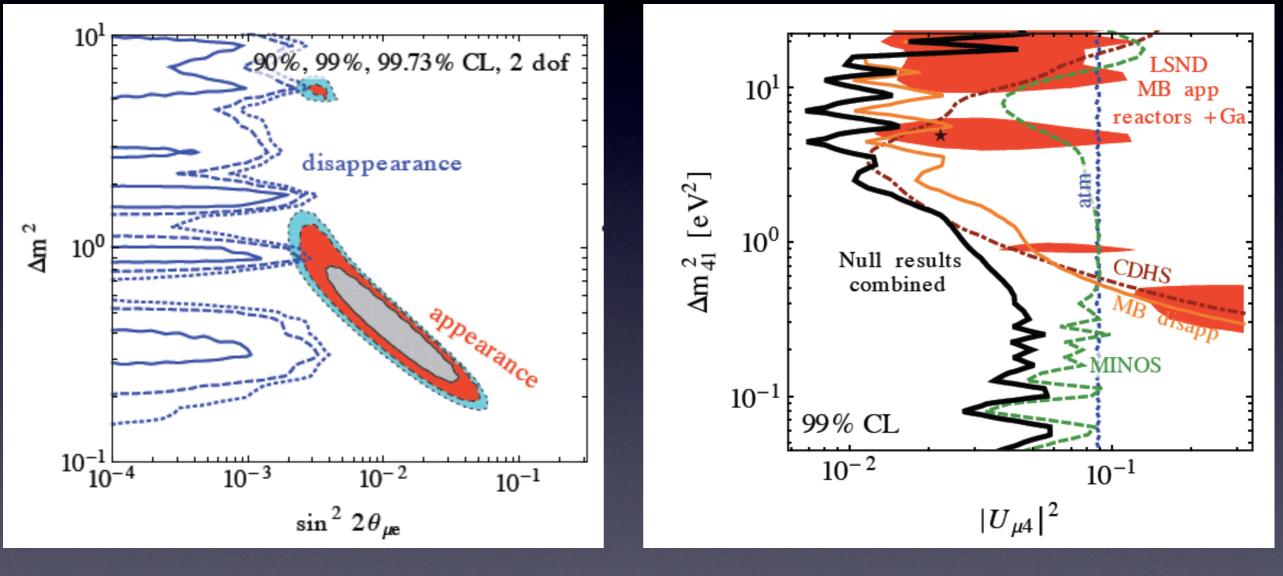
$E = p + m^2/2E + new terms$

A handful of anomalies with 3-4 σ :

- LSND
- MiniBooNE
- Reactor anomaly
- Gallium anomaly

Stringent bounds from cosmology: [Saviano 2015]

→ 4th light neutrino with eV-range mass ?

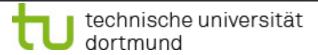


ch Päs

Sterile v D

Appearance-disappearance tension

Evidences vs. null results combined



[Kopp, Machado, Maltoni, Schwetz, 2014][→ Talk by Georgia Karagiorgi]

Sterile v Dispersion Relations

Sterile netrinos can have a very different origin than the SM neutrinos (e.g. superpartners of dilaton, radion or other moduli fields, mirror world fermions, etc...)

> There is NO compelling reason to believe that a sterile neutrino should behave just as the SM neutrinos

Evidence for light sterile v is partly conflicting!

- May be wrong!
- May hint towards deviations from the usual oscillation mechanism!
- Sterile neutrinos as messengers of exciting new physics?

Attractive candidate: Altered dispersion relations

 $E = p + m^2/2E + new terms$

- Exotic matter effects, new interactions [Nelson...]
- Lorentz violation [Barenboim, Quigg, Kostelecky....]
- Shortcuts in extra dimensions [Päs, Pakvasa, Weiler...]

technische universität dortmund

Evidence for light sterile v is partly conflicting!

- May be wrong!
- May hint towards deviations from the usual oscillation mechanism!
- Sterile neutrinos as messengers of exciting new physics?

Attractive candidate: Altered dispersion relations

$$E = p + m^2/2E + new terms$$

- Exotic matter effects, new interactions [Nelson...]
- **Lorentz violation** [Barenboim, Quigg, Kostelecky....]
- Shortcuts in extra dimensions [Päs, Pakvasa, Weiler...]

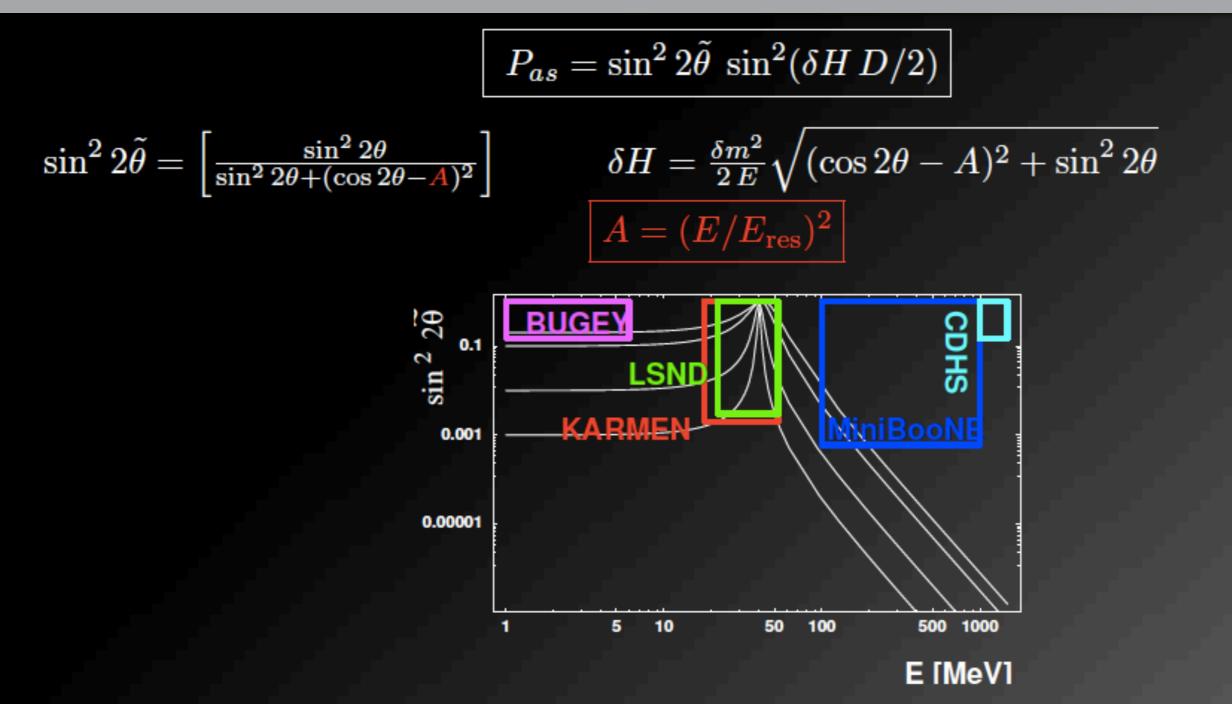
technische universität dortmund

Altered dispersion relations: vanilla type

Evolution equation in flavor space:

$$i\frac{d}{dt}\left(\begin{array}{c}\nu_a(t)\\\nu_s(t)\end{array}\right) = H_F\left(\begin{array}{c}\nu_a(t)\\\nu_s(t)\end{array}\right)$$

Hamiltonian in the presence of bulk shortcuts:


$$H_F = \pm \frac{\delta m^2}{4E} \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ -\sin 2\theta & -\cos 2\theta \end{pmatrix} + E \frac{\epsilon}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

 \Rightarrow A Resonance exists at $E_{\rm res} = \sqrt{\frac{\delta m^2 \cos 2\theta}{2 \epsilon}}$

 \rightarrow choose E_{res} =30-400 MeV $\leftrightarrow \epsilon \simeq 10^{-18} - 10^{-16}$ (Päs, Pakvasa, Weiler, 2005)

Altered dispersion relations: vanilla type

Oscillations at $E \gg E_{\rm res}$ (CDHS)are suppressed! CDHS bound not valid anymore! 3+1 spectrum allowed again! \rightarrow choose $E_{\rm LSND} < E_{\rm res} \ll E_{\rm CDHS}$ (Päs, Pakvasa, Weiler, 2005)

U technische universität dortmund

Sterile v Dispersion Relations

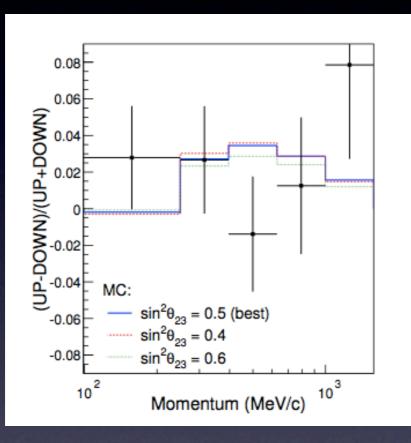
Altered dispersion relations with 3+1 neutrinos

$$\lambda_{4/3} \equiv \lambda_{\pm} = \frac{\Delta}{4E} \left(1 - \cos 2\theta_{34} \left(\frac{E}{E_{\rm R}} \right)^2 \pm \sqrt{\sin^2 2\theta_{34} + \cos^2 2\theta_{34}} \left[1 - \left(\frac{E}{E_{\rm R}} \right)^2 \right]^2 \right)$$

2 mass eigenstates with diverging effective masses!
 Diverging Δm²'s
 [Marfatia, HP, Pakvasa, Weiler, 2012]
 Fast oscillations:

$$P(\nu_a \to \nu_b) = 4 V_{a3}^2 V_{b3}^2 \times \begin{cases} -\sin^2 \left(\frac{L(\lambda_+ - \lambda_-)}{2}\right) & \sin^2 \tilde{\theta} \cos^2 \tilde{\theta} \\ +\sin^2 \left(\frac{L\lambda_+}{2}\right) & \sin^2 \tilde{\theta} \\ +\sin^2 \left(\frac{L\lambda_-}{2}\right) & \cos^2 \tilde{\theta} . \end{cases}$$

Contrary to matter effects: Sterile neutrino Lorentz violation strictly constrained by atmospheric v L/E


[P. Huber, 2007]

Beyond vanilla-type

Closer look at data

[Super-Kamiokande 2010]

Lorentz Violation

[Kostelecky, Mewes 2012]

coefficient	d	CP	Т	CPT
$a_L^{\mulpha_1lpha_{d-3}}$	odd	_	+	_
$c_L^{\mulpha_1lpha_{d-3}}$	even	+	+	+
$m_l^{lpha_1lpha_{d-3}}$	odd	+	+	+
$e_l^{lpha_1lpha_{d-3}}$	even	_	+	_
$g_l^{\mu ulpha_1lpha_{d-3}}$	even	+	_	_
$H_l^{\mu ulpha_1lpha_{d-3}}$	odd	_	—	+
$g_{M+}^{\mu ulpha_1lpha_{d-3}}$	even	+	_	_
$H_{M+}^{\mu ulpha_1lpha_{d-3}}$	odd	_	_	+
$a_l^{\mulpha_1lpha_{d-3}}$	odd	_	+	_
$c_l^{\mulpha_1lpha_{d-3}}$	even	+	+	+

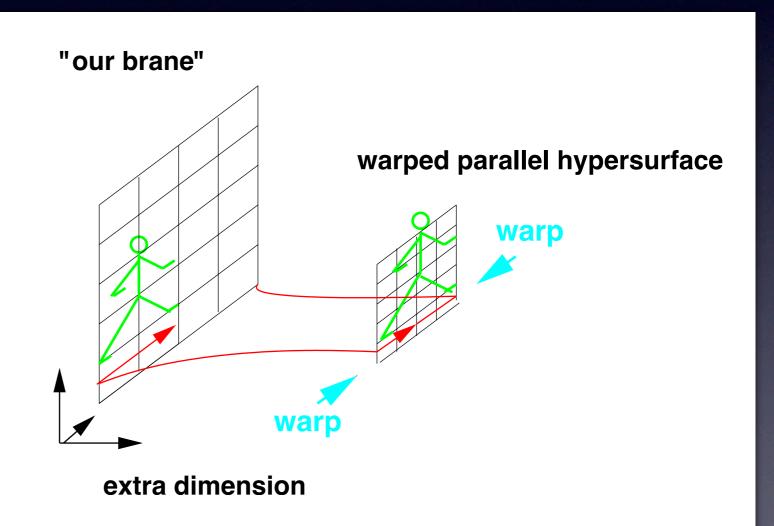
Extra-dimensional shortcuts

Discuss effects of spacetime-geometry

→ effects on baseline and energy dependence!

technische universität dortmund

Shortcuts from asymmetrically warped spacetime

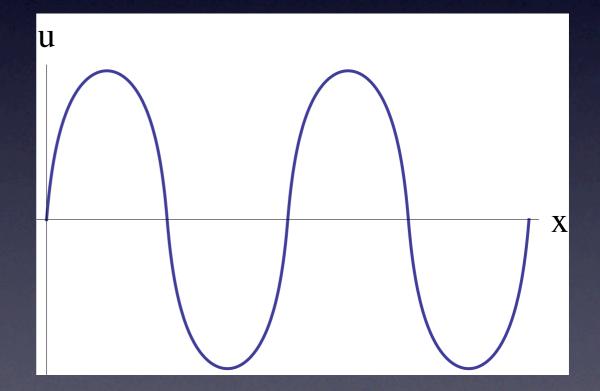

Consider an asymmetrically warped extra dimension with a sterile neutrino in the bulk

$$ds^2 = dt^2 - e^{-2k|u|}dx^2 - du^2$$

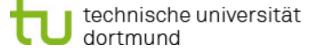
[Chung, Freese, 1999, 2000] [Csaki, Erlich, Grojean, 2001]

Heinrich Päs

- Shrinks space parallel to the brane
- Allows for shortcuts in the extra dimension!

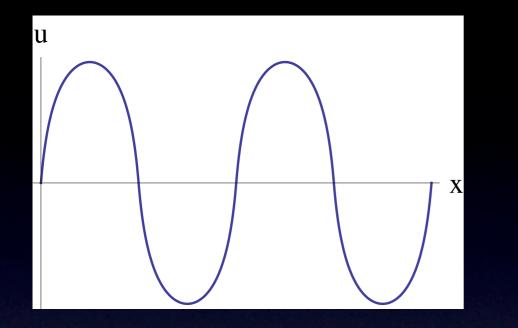


Shortcuts from asymmetrically warped spacetime


Geodesics: oscillating around the brane

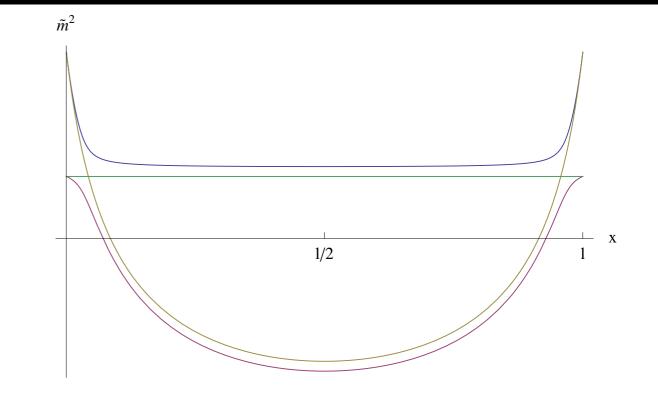
$$u(x) = \pm \frac{1}{2k} ln[1 + k^2 x(l - x)]$$

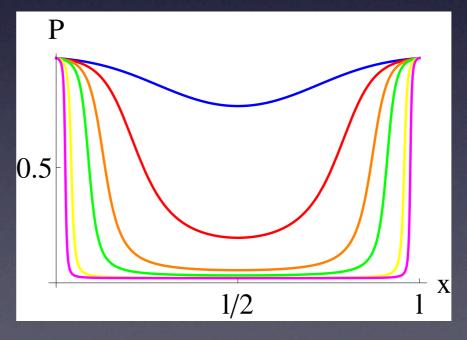
Shortcut "switched on and off" during propagation



[Hollenberg, Micu, HP, Weiler, 2009]

Resonant conversion



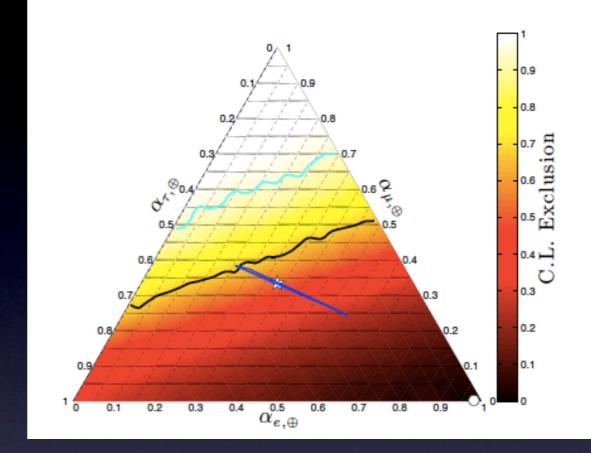

- Shortcut "switched on and off" → new baseline effect
- MSW analogue: resonant conversion

Compatible with atmospheric L/E?

technische universität

dortmund

[HP, Sicking, Supsar, work in progress]


Sterile v Dispersion Relations

Astrophysical Flavor Ratios

Expectation pion source:

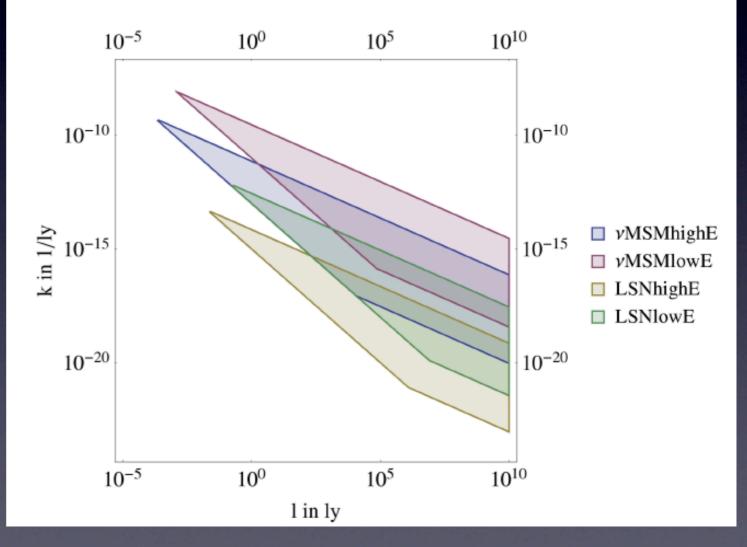
Flavor Ratio at the source: 1:2:0

Maximal V_{μ} - V_{τ} mixing: Decoherence \rightarrow Flavor Ratio: I:I:I at Earth

Energy interval: 60 TeV – 3 PeV [Palomares-Ruiz, Vincent, Mena, 2015]

Flavor Ratio Best Fit: 1:0:0 Altered dispersion relations?

Sterile v Dispersion Relations


Astrophysical Flavor Ratios

Level crossing: shortcut parameter has to be large enough?

$$\gamma_{max} = \frac{2E^3}{(\delta m^2)^2 \sin^2(2\theta)} k^2 l \ll 1$$

4: 1: 1 possible in large regions of parameter space, 0:0:0 possible at high Energies !

$$\epsilon = 1 - e^{-k|u|} = 1 - \frac{1}{\sqrt{1 + k^2 x(l - x)}}$$

[Aeikens, HP, Pakvasa, Sicking, 2014]

U technische universität dortmund

Sterile v Dispersion Relations

Big Bang Nucleosynthesis

Prediction of primordial abundances of light elements:

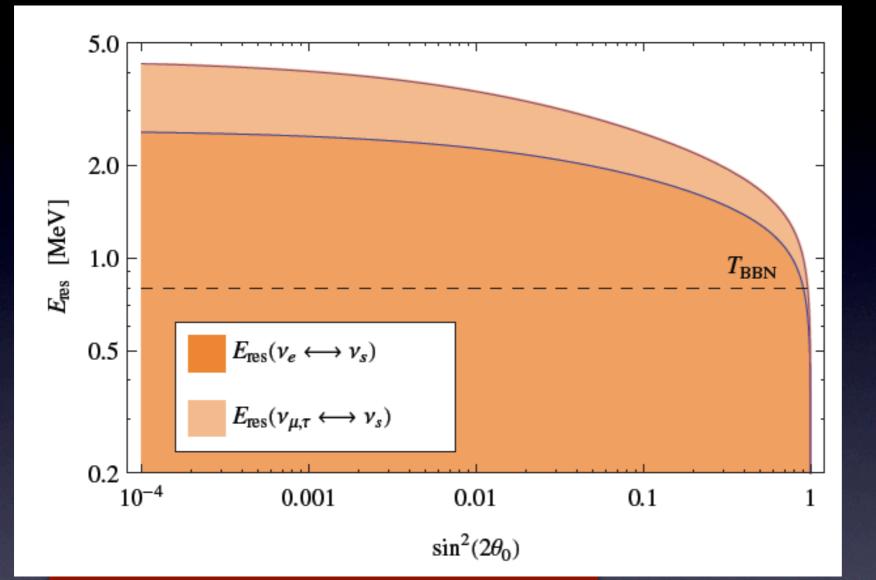
major success of Big Bang Cosmology

Problem with sterile neutrinos: ν oscillations populate extra species in early universe:

$$ho_{
u_s} = rac{7}{8}
ho_\gamma$$

- $\bullet \rightarrow$ faster expansion of the universe
- $\bullet \rightarrow$ higher temperature for weak freezeout
- \rightarrow more neutrons \rightarrow larger ${}^{4}He$ abundance

Bulk shortcut scenario:


- higher density: stronger brane bending due to gravitational attraction
- higher temperature: more brane fluctuations
- higher density: more scattering off into the bulk in asymmetrically warped spacetimes

All cases: larger $\epsilon \to \text{smaller } E_{\text{res}}$

If $E_{
m res} \lesssim 3$ MeV: oscillations suppressed (Päs, Pakvasa, Weiler, 2005)

Big Bang Nucleosynthesis

Small E_{Res} allows for large mixing!

Similar aguments work for other cosmological bounds!

[Aeikens, HP, Weiler, work in progress]

Sterile v Dispersion Relations

Summary

- Several 3-4 σ evidences for sterile neutrinos
- Partially in conflict with each other & bounds
- Shortcuts in extra dimensions: energy & baseline dependence, resonant conversion
- v oscillation fits?
- Strong effect on astrophysical flavor ratios
- Possibility to avoid cosmology constraints
- Non-standard v properties should be explored more vigorously while searching for a solution to neutrino anomalies!

