Flavorspin
 A Novel Reparameterization of the Flavor Puzzle

JeFFrey berryman, Northwestern university

Motivation

$$
\mathcal{L}_{Y u k} \supset-\overline{Q_{L}} Y_{U} U_{R} \widetilde{H}-\overline{Q_{L}} Y_{D} D_{R} H-\overline{L_{L} Y_{L} E_{R} H+h . c .}
$$

Fermion masses are hierarchical ($m_{u} \ll m_{c} \ll m_{t}$, etc.)
Quark mixing angles are small
Two leptonic mixing angles are large
Where is this all coming from?

Flavorspin

Flavor physics governed by a symmetry: $S U(2)_{V}$ Fermions $\left(Q_{L}, L_{L}, U_{R}, D_{R}, E_{R}, N_{R}\right)-3$
Yukawa couplings-5 $\oplus \mathbf{3} \oplus 1$ (real)

$$
Y_{U}=e^{i \eta_{5}} Y_{5}+e^{i \eta_{3}} Y_{3}+y \mathbb{I}
$$

$$
Y_{D}=\alpha\left(e^{i \zeta_{5}} Y_{5}+e^{i \zeta_{3}} \beta_{3} Y_{3}+\beta_{d} y \mathbb{I}\right)
$$

$C P$ violation does not come from Y_{5}, Y_{3} !

Quark Sector - CP Conservation

Set all phases in Y_{U}, Y_{D} to zero.
Counting parameters - choose a basis for Y_{5}, Y_{3} :

$$
Y_{5}=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & -a-b
\end{array}\right), Y_{3}=\left(\begin{array}{ccc}
0 & X & Y \\
-X & 0 & Z \\
-Y & -Z & 0
\end{array}\right)
$$

Solve for $\left\{a, b, y, X, Y, Z, \alpha, \beta_{3}, \beta_{d}\right\}$ in terms of

$$
\left\{m_{u}, m_{c}, m_{t}, m_{d}, m_{s}, m_{b}, \theta_{12}, \theta_{13}, \theta_{23}\right\} .
$$

Quark Sector CP Conservation

Parameter	Value
$m_{t}(160.0 \mathrm{GeV})$	160.0 GeV
$m_{c}(1.275 \mathrm{GeV})$	1.275 GeV
$m_{u}(2 \mathrm{GeV})$	0.0023 GeV
$m_{b}(4.180 \mathrm{GeV})$	4.180 GeV
$m_{s}(2 \mathrm{GeV})$	0.095 GeV
$m_{d}(2 \mathrm{GeV})$	0.0048 GeV
θ_{12}	13.04°

Quark Sector - CP Violation

Allow for phases to be nonzero only ζ_{3} is acceptable.

$$
\begin{gathered}
Y_{U}=Y_{5}+Y_{3}+y \mathbb{I} \\
Y_{D}=\alpha\left(Y_{5}+e^{i \zeta_{3}} \beta_{3} Y_{3}+\beta_{d} y \mathbb{I}\right)
\end{gathered}
$$

Modifications to mixing angles are small, but large δ_{CP} !

Leptons

The central question:

Can we use the same Y_{5}, Y_{3} to describe the observed masses/mixing angles in leptonic sector?

Charged Leptons

 $Y_{L}=\alpha_{L}\left(Y_{5}+\lambda_{3} Y_{3}+\lambda_{e} y \mathbb{I}\right)$

Determine $\alpha_{L}, \lambda_{3}, \lambda_{e}$ for each quark solution.

Neutrino Masses

How to introduce neutrino masses?

1. Type-II Seesaw: $\mathcal{L}_{Y u k} \supset-\frac{v^{2}}{2 \Lambda} \cdot\left\{\overline{v_{L}^{c}} Y_{v}^{(I I)} v_{L}+\right.$ h.c. $\}$
2. Pure Dirac Mass: $\mathcal{L}_{Y u k} \supset-\frac{v}{\sqrt{2}} \cdot\left\{\overline{v_{L}} Y_{v} N_{R}+h . c.\right\}$
3. Type-I Seesaw: $\mathcal{L}_{Y u k} \supset-\frac{v^{2}}{2 \Lambda} \cdot\left\{\overline{v_{L}^{c}} Y_{V} Y_{v}^{T} v_{L}+\right.$ h.c. $\}$

Neutrino Masses

Available Information $-\Delta m_{12}^{2}, \Delta m_{13}^{2}$
-Type-II is solvable: $Y_{v}^{(I I)}=\alpha_{v}\left(Y_{5}+\rho_{v} y \mathbb{I}\right)$
-Dirac, Type-I are under-constrained; need lowest mass as input to be solvable.

$$
Y_{v}=\alpha_{v}\left(Y_{5}+\rho_{3} Y_{3}+\rho_{v} y \mathbb{I}\right)
$$

Inverted hierarchy is strongly disfavored!

Leptonic Mixing

The real litmus test:
Can the solutions found reproduce the leptonic mixing angles and $U_{P M N S}$?
In the case where CP is conserved, the answer appears to be no!

Type-II Seesaw

Pure Dirac with

$m_{1}=0.05 \mathrm{eV}$

Type-I Seesaw with
$m_{1}=0.05 \mathrm{eV}$

Neutrinos - CP Violation

CP violation may be a crucial part of the story...
Type-II Seesaw is highly disfavored!

$$
Y_{v}^{(I I)}=\alpha_{v}\left(Y_{5}+e^{i \varepsilon} \rho_{v} y \mathbb{I}\right)
$$

Analyses of Dirac and Type-I ongoing, but seem to favor Type-I...

$$
Y_{v}=\alpha_{v}\left(Y_{5}+e^{i \varepsilon} \rho_{3} Y_{3}+\rho_{v} y \mathbb{I}\right)
$$

Prospects - What's Next?

-Phenomenology
"Flavor-Changing Neutral Currents: $b \rightarrow s \gamma, \mu \rightarrow e \gamma, \ldots$ "Minimal Flavor Violation

$$
\begin{gathered}
\mathcal{L}_{(d>4)} \supset \frac{c}{\Lambda^{d-4}}\left(Y_{5}+c_{3} Y_{3}+c_{1} \mathbb{I}\right)^{\alpha \beta} Q_{\alpha \beta}^{(d)} \\
\text { e.g., } Q_{\alpha \beta}^{(d)} \rightarrow \overline{L_{L}^{\alpha}} \sigma^{\mu \nu} E_{R}^{\beta} \cdot H F_{\mu \nu} \quad(d=6)
\end{gathered}
$$

-Constructing Models - Gauging, UV Completion...

Conclusions

-Flavorspin imposes order on the chaos.
-Predictive for the leptons.
-Inverted hierarchy, Type-II Seesaw are disfavored.
-Analysis with CP violation still ongoing...

