

Flavorspin

A Novel Reparameterization of the Flavor Puzzle

JEFFREY BERRYMAN, NORTHWESTERN UNIVERSITY

BASED ON:

ARXIV:1502.04140 (JB, D. HERNÁNDEZ); IN PREPARATION (JB, P. COLOMA, D. HERNÁNDEZ)

Motivation

$\mathcal{L}_{Yuk} \supset -\overline{Q_L} \mathbf{Y_U} U_R \widetilde{H} - \overline{Q_L} \mathbf{Y_D} D_R H - \overline{L_L} \mathbf{Y_L} E_R H + h.c.$

Fermion masses are hierarchical ($m_u \ll m_c \ll m_t$, etc.) Quark mixing angles are small Two leptonic mixing angles are large *Where is this all coming from?*

Flavorspin

Flavor physics governed by a symmetry: $SU(2)_V$ Fermions $(Q_L, L_L, U_R, D_R, E_R, N_R) - 3$ Yukawa couplings $- 5 \oplus 3 \oplus 1$ (real)

$$Y_{U} = e^{i\eta_{5}}Y_{5} + e^{i\eta_{3}}Y_{3} + y \mathbb{I}$$
$$Y_{D} = \alpha \left(e^{i\zeta_{5}}Y_{5} + e^{i\zeta_{3}}\beta_{3}Y_{3} + \beta_{d}y \mathbb{I} \right)$$

CP violation does not come from Y_5, Y_3 !

Quark Sector – CP Conservation

Set all phases in Y_U , Y_D to zero.

Counting parameters – choose a basis for Y_5 , Y_3 :

$$Y_{5} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -a - b \end{pmatrix}, \quad Y_{3} = \begin{pmatrix} 0 & X & Y \\ -X & 0 & Z \\ -Y & -Z & 0 \end{pmatrix}$$

Solve for $\{a, b, y, X, Y, Z, \alpha, \beta_3, \beta_d\}$ in terms of $\{m_u, m_c, m_t, m_d, m_s, m_b, \theta_{12}, \theta_{13}, \theta_{23}\}$.

Quark Sector CP Conservation

Parameter	Value
m _t (160.0 GeV)	160.0 GeV
m _c (1.275 GeV)	1.275 GeV
<i>m_u</i> (2 GeV)	0.0023 GeV
<i>m</i> _b (4.180 GeV)	4.180 GeV
<u>m</u> s(2 GeV)	0.095 GeV
<i>m_d</i> (2 GeV)	0.0048 GeV
θ_{12}	13.04º

Quark Sector — CP Violation

Leptons

The central question:

Can we use the same Y_5 , Y_3 to describe the observed masses/mixing angles in leptonic sector?

Neutrino Masses

How to introduce neutrino masses?

1. Type-II Seesaw:
$$\mathcal{L}_{Yuk} \supset -\frac{\nu^2}{2\Lambda} \cdot \left\{ \overline{\nu_L^C} Y_{\nu}^{(II)} \nu_L + h.c. \right\}$$

- 2. Pure Dirac Mass: $\mathcal{L}_{Yuk} \supset -\frac{v}{\sqrt{2}} \cdot \{\overline{v_L}Y_vN_R + h.c.\}$
- **3.** Type-I Seesaw: $\mathcal{L}_{Yuk} \supset -\frac{v^2}{2\Lambda} \cdot \{\overline{v_L^c} Y_v Y_v^T v_L + h.c.\}$

Neutrino Masses

Available Information — Δm_{12}^2 , Δm_{13}^2

•Type-II is solvable:
$$Y_{\nu}^{(II)} = \alpha_{\nu}(Y_5 + \rho_{\nu}y \mathbb{I})$$

 Dirac, Type-I are under-constrained; need lowest mass as input to be solvable.

$$Y_{\nu} = \alpha_{\nu}(Y_5 + \rho_3 Y_3 + \rho_{\nu} y \mathbb{I})$$

Inverted hierarchy is strongly disfavored!

Leptonic Mixing

The real litmus test:

Can the solutions found reproduce the leptonic mixing angles and U_{PMNS} ? In the case where CP is conserved, the answer appears to be **no!**

Pure Dirac with $m_1 = 0.05 \ eV$

Type-I Seesaw with $m_1 = 0.05 \ eV$

Neutrinos — CP Violation

CP violation may be a crucial part of the story... Type-II Seesaw is highly disfavored! $Y_{\nu}^{(II)} = \alpha_{\nu} (Y_5 + e^{i\epsilon} \rho_{\nu} y \mathbb{I})$

Analyses of Dirac and Type-I ongoing, but seem to favor Type-I... $Y_{\nu} = \alpha_{\nu} (Y_5 + e^{i\varepsilon} \rho_3 Y_3 + \rho_{\nu} y \mathbb{I})$

Prospects – What's Next?

Phenomenology

Flavor-Changing Neutral Currents: $b \rightarrow s\gamma, \mu \rightarrow e\gamma,...$ Minimal Flavor Violation

$$\mathcal{L}_{(d>4)} \supset \frac{c}{\Lambda^{d-4}} (Y_5 + c_3 Y_3 + c_1 \mathbb{I})^{\alpha\beta} Q_{\alpha\beta}^{(d)}$$

e.g., $Q_{\alpha\beta}^{(d)} \to \overline{L_L^{\alpha}} \sigma^{\mu\nu} E_R^{\beta} \cdot HF_{\mu\nu} \quad (d=6)$

Constructing Models – Gauging, UV Completion...

Conclusions

- •Flavorspin imposes order on the chaos.
- Predictive for the leptons.Inverted hierarchy, Type-II Seesaw are disfavored.
- Analysis with CP violation still ongoing...