Implementing Checklists in Electronic form using the Control Room Logbook
Marcus A. Winn
MCIS Department

College of Arts and Sciences

Mississippi Valley State University

14000 Highway 82 West
Itta Bena, MS 38941

[image: image7.jpg]

Supervisor:

Takahiro Yasuda

Particle Physics Division

D0 Experiment

Fermi National Accelerator Laboratory

Batavia, IL 60510

ABSTRACT:

This paper describes the Electronic Logbook used at the D0 experiment at Fermi Lab, in particular the conversion of various checklist into the Electronic Logbook using XML, HTML, and Python programming language. The Electronic logbook is highly flexible and has long-lasting data storage capabilities. The electronic logbook is also portable and saves time and space that would have been used for the paper copies of the logbook.
INTRODUCTION:

The Electronic Logbook (E-Log) is part of the family of applications most know as weblogs. The E-Log serves as a way to put information online where people can access, search and update or add any entries from any web browser. Experiments such as D0, Minos and MiniBooNE are using the E-Log in their control room to record daily activities. As a summer intern at D0, my specific assignment was to gather the paper checklists used by D0 and make them available online so that individual D0 members can search entries and make changes to them or add new entries without going through the hassle of trying to input or find logs that are kept in binders on a shelf in the control room. Thus, doing this saves time and frustration.
What is D0?

Many people may say that D0 is a worldwide collaboration of approximately 650 scientists from nearly 75 institutions and 19 different nations that conduct research on the fundamental nature of matter. Yes, that answer would be correct but only partially. D0 is one of the two large multi-purpose particle detectors at Fermilab.
[image: image2.png]D@ Detector

MINI

MR
DRIFT
TUHES -m?n scém(m;u
POT'a
P —F
(mo —[F———
‘3 ‘ l
- —
I S T | |l | | [l ¢ ¢ § ¢ | | i | { | |

(m) L

Sudeshna Banerjee Interaction meeting on Linear Collider and 5
Neutrino Physics

Fermi National Accelerator Laboratory is a laboratory that specializes in high energy particle physics. Fermi is home to the Tevatron which is 6.28 kilometers (4 miles) in circumference, making it the highest energy particle accelerator in the world. The Tevatron is where protons and antiprotons circle in opposite directions traveling almost at the speed of light. Superconducting magnets focus the beam so that they collide with one another for scientist to research the collision. The beams collide at the center of the 5,000 ton detector inside the tevatron tunnel at energies of 2 trillion electron volts revealing the conditions of matter in the early universe and its structure at the smallest scale. There are eight sub-detectors in the D0 detector. The detectors are designed to stop as many of the subatomic particles created from the energy released by colliding proton/antiproton beams as possible. There are two types of detectors that discern the particles in an event. The calorimeters absorb particles and measure the energy while tracking detectors record the path of the particle. The beam collision area has tracking chambers that are in a strong magnetic field parallel to the beam. Outside the tracking chamber are the pre-shower detectors and the calorimeter. The last layer of the detector is formed by the Muon chambers. These chambers identify the muons passing through the detector. Concrete blocks which act as radiation shields encase the whole detector. The detector can inspect 3,000,000 collisions per second and will record 100 collisions per second. When the protons and antiprotons collide, the detector obtains various information of the collision as raw data. Then scientists and researchers carry out numerous data analyses to determine if any new particles were formed and what direction did they travel.
If you are still wondering what is D0 and want to get more technical about it, then basically D0 is a large camera that takes a snap shot of the particles as they collide and lets scientists look back in time and figure out what caused the beam particles to react the way they do and to study the fundamental nature of matter. So why does it have the name D0? The Tevatron ring is divided into six sections: A, B, C, D, E and F. Each section is further divided into numbered subsections. The D0 experiment hall just happens to lay at the section of the ring that is labeled D0, thus giving it the name D0. [1]

[image: image3]
CHECKLIST AND THE ELECTRONIC LOGBOOK:

The D0 experiment uses several checklists: Shift Checklist, Run Checklist, Store checklist. Etc. These checklists are used to confirm that the experiment is in a good condition.
The paper checklists were usually kept in binders that were on a shelf down in the control rooms of the experiment hall. In order for an entry to be made or even searched for a D0 member would have to find the particular binder and search for the entry from the book. This process would take much time and also cause confusion. The plan was to implement the checklists in electronic form, using the Control Room Logbook developed by Fermilab. Experimental conditions and observations used to be kept in volumes of paper log books, but the daily routine of searching through the log books and adding or editing an entry was just too much of a hassle. In 1998 this method of keeping the logs were substituted by an electronic logbook. The electronic logbook recorded all of the activities of many of the experimental halls at Fermilab. The Control Room Logbook (CRL) was designed to replace the traditional paper logbooks. The CRL application is written in Java and XML. The entries are saved as UTF-8 based XML files. This allows the data to be given structure and meaning, so it can be easily parsed in the present and far into the future. The XML tag data is indexed in a relational database making queries on dates, keywords, entry type and other criteria feasible and fast. There have been more than 200,000 entries recorded into the logbook with an average of about 150 entries a day. There are many advantages of the entries that are put into the Logbook. They may contain graphs, screen shots, forms, formatted text, or even checklist that the control room may use. [2]
There are two parts of the Control Room Logbook. There is the stand alone control room logbook, and the Control Room logbook web (CRLW) version. The web version of the logbook was introduced in 2003. Users consider the web version to interact with the logbook. Figure 1-1 shows how the CRL and CRLW work together to store indexed information in the database. [3]
Figure 1-1
[image: image4.png]WWW
CRL Access
> DBMS HTML
network

TP

The CRLW is written in Java and Java Server Pages. These applications require Apache and Tomcat on a web server along with a database. D0 currently uses MySQL for the database. The entries are still stored the same way by using XML and HTML. XML is an international standard defining a method for storing structured data in a text file. XML is platform-independent and well supported. The uniqueness of this format is to insure that the main data of the CRL will still be available if the CRL software or any of its products it uses become unavailable in the future. All of the information that is needed for retrieval, searching, indexing and displaying is available inside of the XML entry file. This method is not always the fastest or most efficient way to search for data. In order to improve the speed of the searches, the CRL uses an auxiliary SQL database to index the most used data fields. The CRL has been tested using Oracle, MySQL and postgre SQL and should work with any SQL compliant database. An HTML version of the logbook is also created identical to the XML file so that entry retrieval from a web server can be used. This gives the user more flexibility and security on the location of the files. Thus, if the XML file is saved on a secure and restricted-access disk, the HTML version may be saved on a world readable disk (via a web server).
The CRL is very flexible and has a very long list of features. The CRL desktop is almost entirely configurable by the logbook administrator. If there are any changes that need to be done or any new tabs that need to be added, the administrator can just open the XML file and make the changes as needed. This comes in handy since most control rooms have different uses and needs of the logbook. The XML file for the logbook configuration is pages full of XML code that lay out the format of the logbook. Everything that is displayed in the logbook is defined in this XML configuration file. The first XML statement allows the user to insert a tab and name the tab. The user can put as many tabs as possible in the desktop interface. These tabs define the experiment’s “view” of the information being logged. The administrator now has the ability to define desktops available to the operator. Following the tab statements, there are statements that input a tab for keywords so that the entry can be searched with ease. Each official main tab is given a sub menu which allows the user to define containers that are used for cataloging entries as they are entered into the logbook. The containers are selected from a cascading menu bar on the desktop. There are 4 types of containers used to add and retrieve entries. The type of the container associated with a menu item on the desktop is specified in this XML configuration. The standard container is used for adding entries through the drag and drop method. There is a scheduled container type that is used for adding entries on a periodic basis. The other two containers are for reporting of existing entries. The daily report is the results of relational queries and/or selected entries and the thread container holds the results of a thread of interest. Threads can be compared to a newsgroup. The named thread can hold any number of entries, and any entry can belong to multiple threads. The multimedia entries are the next statements in the configuration file and are arranged down the right hand side of the logbook. They are tool buttons just like any other buttons that are usually created with some kind of graphics software, Powerpoint or even as text documents. They are not built into the logbook but are configured to the desktop from the XML configuration file allowing it to be easily extended. The buttons are most likely saved as .gif files because they look nicer than plain text. Figure 1-2 shows a snapshot of the E-log, which describes the different features of the E-log.
Figure 1-2

[image: image5.emf]Defines the

experiment’s “view”

of the information

being logged

Sub Menus which

allow the user to

define containers

that are used for

cataloging entries

as they are entered

into the logbook

Multimedia entry

types. The essence

of the information

being logged.

A directory must be made to contain these certain images. It must be located under the same directory that contains the Logbook_admin directory. The default name for the directory is images/entryinputpages. The template file Button.gif is also provided in this default directory. The user must edit the default button to make other ones to match it. The whole path in the XML configuration file must be included when pointing to one of these image files. These entries range from text, images, forms, external process logging, output from external commands, hand sketches using I-pen, arbitrary binary files and customized entries. These buttons are a great significance to the logbook because they allow the entries to be put into the logbook. All the user has to do is simply open the entry input log container as discussed earlier and click and drag whichever button the user desires into the container. If the user wants to write into the log, he/she should drag a text button into the container. Some entries of the logbook are checklist forms that shift operators use to keep a daily track of the events that go on in the D0 experiment hall. We used these forms to implement the electronic version of checklists.

CONFIGURATION FILES FOR E-LOG FORMS:
The checklists are created in separate XML files and are given a button which is usually the name of the checklist. The CRL comes with some ready-made forms that can be used as is or modified by the user. New forms can also be created by the user. For each new form, a corresponding data entry toolbutton must be added to the toolbar. Each form entry type the user adds to the CRL installation has its own XML form definition file. The form.dtd file and the XML form definition files must be located in a directory defined by the Logbook.file_location.forms_directory parameter in the Properties file. CRL Java properties are parameter-value pairs which contain appropriate values in order for a CRL installation to operate correctly. The properties must be defined for database access information, for setting paths to target directories for various data and default browse paths, for turning on or off special features, and much more. These properties are in a file called LogbookConfigParms.properties which is stored under the LogBook_admin directory. The administrator must edit this file before CRL is invoked. The forms can be created with text areas, radio buttons, check boxes, selects, tabs and lists. Elements can be grouped on a line so that they are neat and more attractive when they are viewed in HTML on the web. To do this the element <group> is used to form fields for neat and regular placement in the HTML file. Each XML <LINE> element translates into an HTML <TR>. Each <GROUP> element within a <LINE> translates into a <TD> (table cell). The first line in the form that uses grouping sets the number and widths of columns in the table.
Sample XML Element:

<line>

 <group>

 <text>field1 </text>

 <text>field2 </text>

 </group>

 <group>

 <text>field3 </text>

 <text>field4 </text>

 </group>

 <group>

 <text>field5 </text>

 <text>field6 </text>

 </group>

</line>

<line>

 <group colspan="3">

 <text>field7 </text>

 <text>field8 </text>

 <text>field9 </text>

 <text>field10 </text>

 <text>field11 </text>

 </group>

</line>

This XML statement produces two lines. The first line has three sets of two grouped fields, and the second one has one set of five grouped fields. The previous XML statement should appear on the browser as follows:

field1 field2 field3 field4 field5 field6

field7 field8 field9 field10 field11

All form elements must be inside of an <Line> ….. </Line> tag with the exception of <Form> and <Repeat Blocks>. Every end tag must have an ending (/), for example <text> ….. </text>. Each form or individual form element can be aligned center, right, or left. The <Form> and <Line> elements support the align attribute. Another unique function of the CRL is that it can be set up to automatically e-mail entries to one or more individual or to and entire mailing list at the time the entry is archived.

<MAILLIST>

 <TO>user1@fnal.gov</TO>

 <TO>user2@fnal.gov</TO>

 <TO>userxyz@myuniv.edu</TO>

 <TO>listxyz@myuniv.edu</TO>

 <FROM>user3@fnal.gov</FROM>

 <FROM>listabcd@fnal.gov</FROM>

 <CC>powersthatbe@fnal.gov</CC>

 <BCC>mefistofele@underworld.org</BCC>

 <SUBJECT>Muon chambers update $D $T</SUBJECT>

</MAILLIST>

Tables can also be set up in the form definition by specifying the columns and rows of data. Two buttons are displayed for the user on the form entry that contains a table: Add New Row and Delete a Selected Row as shown in figure 1-3.
<Line>

 <Table height="50" width="200">

 <ColumnLabel name="Date">

 <DateAndTime Date="yes" Time="no" />

 </ColumnLabel>

 <ColumnLabel name="Check Box">

 <CheckBox checked="on" />

 </ColumnLabel>

 <ColumnLabel name="Number int">

 <Integer/>

 </ColumnLabel>

 <ColumnLabel name="Number float">

 <Double/>

 </ColumnLabel>

 <ColumnLabel name="Select Box">

 <Select Editable="yes">

 <Option Name="CMSKIN"/>

 <Option Name="CMSIM"/>

 <Option Name="OOHIT"/>

 <Option Name="OODIGIS"/>

 <Option Name="NTUPLE"/>

 </Select>

 </ColumnLabel>

 <ColumnLabel name="Text">

 <Field/>

 </ColumnLabel>

 </Table>

</Line>
Figure 1-3
[image: image6.png]Add New Row || Delete Selected Row

Date

Check Box

Nurnberint

Nurnber float

Select Box

Text

1:42:40 PM

|}

0/ CMSKIN

The data types that can be inserted into the cells of a table include:
Date and time, a checkbox, integers, doubles(floating point numbers), selects(pull-down, editable or non-editable selection boxes, and text fields.

The forms may also contain other forms. This is made possible by the <insertform> element. This enables the user to create forms in which some fields are reloadable and others are not and be inserted into an existing form. The advantage of this element is that if certain forms have information that is constant and never changes component forms can be configured to reload previously saved data. Component forms can be configured such that their data gets saved to a reload area each time an entry of the form type is archived, or such that the data are not saved each time. This technique allows the user to collect all the information that the experiment needs in the entry while minimizing data input by the user. Simple forms can be created for the user with fields that are automatically filled with new data, and other fields that contain previously saved information. Even though the fields are already filled they are still editable by the user. To embed one form inside of another, a separate XML form definition file is created. Once the separate form is created the <insertform> element is inserted into the target form in place of a <line> element.
<insertformname=”source_form.xml”reload=”false”byreference=”false”

Notice that the reload field is FALSE. If the information from the previous page was to stay the same, the reload field would be TRUE. [4]
The forms can also run a program which allows the output to be displayed in the text area on the form when the user creates an entry using the form. What are the advantages of this? Well seeing that shift operators are very busy and have a lot to do in short time frames, they try to find a way to take less time as possible. The form can have a program to run script from it. By doing this certain fields can have a segment of a program to automatically input the data into the field when the forms is dropped into the container. This saves the shift operator time and he/she can focus on things that are more important. To do this the EXEC element and its program attribute is inserted into the form. The program can be virtually any type of script or an OS command. The program reads the information from the SQL database or it can search web pages for the information. In our forms we use python scripts to collect data. Python was created by Guido Van Rossum in February of 1991. Python is a wide spread programming language used at D0. Python can execute more statement in fewer lines than any of the other programming languages such a C and C++. A segment of the code that I used to run the script is as follows:
#!/usr/bin/env python

import time
from string import *
s=time.ctime()
ar=s.split(None)
print ar[0]+' '+ar[1]+' '+ar[2]+' '+ar[4]
This segment simply gets the information (which in this case is the date and time) from the computer and prints it into the specified field. The codes get longer and more complicated depending on the information needed. The next program that I show will get the Daq rates of the runs of the tevatron.
	#!/usr/bin/env python

###
fetch a file from an http (web) server over sockets via urllib;
urllib supports http, ftp, files, etc. via url address strings;
for hhtp, the url can name a file or trigger a remote cgi script;
see also the urllib example in the ftp section, and the cgi
script invocation in a later chapter; files can be fetched over
the net with Python in many ways that vary in complexity and
server requirements: sockets, ftp, http, urllib, cgi outputs;
caveat: should run urllib.quote on filename--see later chapters;
###

import sys, urllib
import string
import re
import time

def get_L1L2rate():
 #
 # this method returns the global L1, L2 or the calorimeter calibration
trigger rates
 #
 # access information from trigmon webpage
 rates=[]
 trigmon_file_access = 1
 try:
 trigmon_file =
urllib.urlopen('http://www.pa.msu.edu/hep/d0/ftp/tcc/monitoring/trigmon_snapshot.txt')
 trigmon = trigmon_file.readlines()
 trigmon_file.close()
 except:
 print 'Could not access trigmon.'
 trigmon_file_access = 0
 print
 # get the global L1/L2 rates
 if trigmon_file_access==1:
 count = 0
 l1done = 0
 l2done = 0
 base = 1000
 rate1 = 0
 rate2 = 0
 rate3 = 0
 for line in trigmon:
 #print line
 count += 1
 line = string.replace(line,'\n','')
 if string.find(line,'L1 Accept')>=0 and l1done == 0:
 cols = line.split()
#print cols
if cols[3]=="-------":
 rate1 = 0
else:
 buf = cols[3].split('.')
 rate1 = buf[0]
 l1done = 1
#print "L1", rate1
 if string.find(line,'L2 Accept')>=0 and l2done == 0:
 cols = line.split()
#print cols
if cols[3]=="-------":
 rate2 = 0
else:
 buf = cols[3].split('.')
 rate2 = buf[0]
 l2done = 1
#print "L2" ,rate2
 rates.append(rate1)
 rates.append(rate2)

 #print "Average Output Rates in Hz"

 return rates

###
L3 Rate info
###
def get_l3rate(debug):
 l3rates = {}

 if (debug==1): print ""
 # Get the L3 Accept rate from data logger webpage
 servername, filename =
'www-d0online.fnal.gov','/www/daq/operations/status/onlstatus.html'

 dl_addr = 'http://%s%s' % (servername, filename) # can name a cgi
script too
 #test_file = "onlstatus_2003-01-09.html"
 if (debug == 1): print dl_addr

 # try to read in the file
 dl_file_access = 1
 tmp_L3Acc = -1
 tmp_run = -1
 L3Acc = -1
 try:
 dl_file = urllib.urlopen(dl_addr) # returns input
file object
 #dl_file = urllib.urlopen(test_file) # returns
input file object
 except:
 dl_file_access = 0
 if debug==1:
 print "can't open url", dl_addr

 return tmp_L3Acc

 dl = dl_file.readlines() # read data directly here
 dl_file.close()

 got_L3Acc_info = 0
 for line in dl:
 if (debug==1): print "get_l3rate line: ", line
 if (re.search("my reply:",line) and (not re.search("timed
out",line))):
 words = string.split(line)
 if (len(words)>=9):
 try:
 tmp_L3Acc = float(words[8])
 tmp_run = words[6]
 except:
 tmp_L3Acc = -1
 errlog = open('err.log','a')
 errlog.write("%s "%(time.ctime(time.time()))+" could
not convert L3Acc to float \n")
 errlog.write("%s "%(time.ctime(time.time()))+"
L3Acc: %s\n"%(L3Acc))
 errlog.close()

 if (debug==1):
 print "get_l3rate L3Acc: ", L3Acc

 if not l3rates.has_key(tmp_run):
 l3rates[tmp_run] = tmp_L3Acc
 elif l3rates[tmp_run] < tmp_L3Acc:
 l3rates[tmp_run] = tmp_L3Acc

 # sum the L3 rates
 sum = 0.
 for r in l3rates.values():
 sum = sum + r
 if len(l3rates.values())>0:
 L3Acc = sum

 if debug==1:
 print "get_l3rate: len(l3rates.values()): ",len(l3rates.values())
 print "get_l3rate: l3rates: ",l3rates

 return int(L3Acc)

######################################
if __name__=='__main__':
 debug=0
 rates = get_L1L2rate()
 my_L3Acc = get_l3rate(debug)
 print "L1: %s L2: %s L3: %s" % (rates[0],rates[1],my_L3Acc)

	This is one of the more complicated codes. It fetches a file from an http server over the internet. It just simply reads the page until it finds the information that the code specifies. Files can be fetched over the net with Python in many ways that vary in complexity and server requirements. Once the program is written, it is inserted into the form configuration file as follows:
<EXEC Program=”name of program.py” />

<EXEC Program=”/mnt/elog/projects/CRLforms/printDate.py” /> [5]

 Once the forms are configured to the user’s standard, they can be accessed from the logbook. The user opens the logbook and chooses a tab from the desktop and then opens a container from the menu to drop the toolbutton that corresponds to the form in. When the user has filled out the form the information must be archived so that it can be viewed via the web. The web interface to the CRL is implemented using Java Server Pages. This allows the embedding of java code inside an HTML web page, which lets users re-use a lot of the code of the main CRL. From the web version of the CRL the user can easily search the log the following ways:
By date, Shift, Sequence Number, Keywords, Operators, categories, and by the name of the form.
Conclusion:
By converting the Checklists into electronic form using the Control Room Logbook, I found that this method saves D0 crewmen time and space. The Electronic Logbook is highly flexible and has large storage capabilities to query the information of checklists along with many more of the activities that D0 experiments should record. The CRL is still a work in progress and there are new releases about every other month. Maybe in the future the checklists will be able to be completed without a D0 member filling in any information. The checklists will all be created with script coding to input the information into the forms.

	

Reference:
[1] “Wikipedia (D0 Experiment)” 20 June 2007, http://en.wikipedia.org/wiki/The_D0_Experiment.
[2] “Control Room Logbook” 28 June 2007, http://cepa.fnal.gov/CRL/index.html
[3] “Database Access” 28 June 2007, http://cepa.fnal.gov/CRL/database.htm
[4] “Control Room Logbook User’s and Administrators Guide” 19 July 2007, http://computing.fnal.gov/docs/products/crl/manual.html
[5] Martelli, Alex Python in a Nutshell. O’Reilly & Associates, Inc. 2003
DØ: Fermi’s Best Detector

EØ:

FØ:

CØ:

BØ: AKA CDF

AØ: High Rise

PAGE
18

[image: image1.jpg]

