[image: image18.jpg]

 [image: image2.png]N
= ONIVERSSY

 [image: image3.png]

Forward Pixel Configuration Database Interface in C++

Programming Language

[image: image1.png]

Michael A. Dones

SIST Program

Polytechnic University of Puerto Rico

Electrical, Computer Engineering & CS Department

377 Ponce de León Ave.
Hato Rey, PR 00918

Supervisor:

Umesh Joshi

Particle Physics Division

Fermi National Accelerator Laboratory

Batavia, IL 60510-0500

August 7, 2007

Table of Contents
Abstract ………………………………………………………………………………...3

Introduction ………………………………………………………………………….....5

Materials and Methods ……………………………………………………………........7

Results ………………………………………………………………………………….9

Discussion and Conclusions…………………………………………………………....10

Acknowledgements ………………………………………………………………….....11

References ……………………………………………………………………………...12

Graph and Figures …………………………………………………………...................13
ABSTRACT

Forward Pixel Configuration Database Interface. MICHAEL A. DONES (Polytechnic University of Puerto Rico, Hato Rey , PR 00918) UMESH JOSHI (Fermi National Accelerator Laboratory, Batavia, IL 60510).

The Compact Muon Solenoid (CMS) is one of the detectors of the Large Hadron Collider (LHC) at CERN. The LHC, built at Geneva, Switzerland, will accelerate a beam of particles to the highest energies ever achieved by human kind. An access to this energy regime requires an international collaboration. Thus, Fermi National Accelerator Laboratory (Fermilab), and other universities are involved in this project. The CMS has a group of people at Fermilab working in the inner layer of the detector. The inner detector, which is the closest one to the collision area of the proton-proton beam, is called the Silicon Pixel Detector. This silicon detector is connected to a computer that controls it with a data acquisition program that is called XDAQ. XDAQ communicates with all the electronic components and chips of the detector. XDAQ is a series of C++ classes with different purposes. One of the purposes is the configuration and initial settings for some of the components and the chips. We need to develop a C++ interface that provides all the configuration values and initial settings to the XDAQ classes. XDAQ already has that implementation but is doing it by reading the values from data files. Reading from a data file is susceptible to making writing errors in the file. In order to write the same thing in different places it must be done manually which is a tedious process. The CMS group decided to make a huge relational database that contains all the parts of the detector and a configuration database that contains all the configurations values. Now we have to make the same C++ interface but instead of reading from files it is more convenient reading from the database that is more convenient because all the tables are related and is more intelligent.

INTRODUCTION

 The CMS has different layers of detectors. One of them is the Silicon Pixel Tracker detector which is the one closest to the collision area. It’s called silicon pixel because it has little pixel of silicon semi conducting materials placed in barrels and disks. When a collision occurs and the particle comes out and hits this pixels, the silicon emits a spike and one can track the particle and determinate its momentum. This detector is made of four forward pixel disks and a barrel made of 3 layers (see Figure 1). Each disk has twenty four turbine blades; each blade contains 2 panels, one in each side of the blade. There are two types of blades; the blades that are facing the IR (collision point) of the detector and the ones that are facing the opposite direction (see Figure 1). The blades that are facing the IR have four plaquetes, and the ones that are facing the opposite side have three plaquetes (see Figure 2). Each plaquete has ROC’s (Read out Chips) that are bump bonded to silicon sensors (see Figure 3). Each blade has 45 ROC’s and there are 96 blades in the four disks, so there’s a total of 4320 ROC’s. Each ROC has 4160 pixels thus there are approximately 18 million pixel in the four forward disks. To control all of them, a lot of instrumentation is needed. Electronics and computers are needed in order to understand what is happening in each one of the pixels (see Figure 4).

 A group of CMS at CERN designed a program that is called XDAQ which monitors all the components at the detector. XDAQ is a series of C++ classes that works with different aspects of the pixel tracker detector. One of those functions of XDAQ is to configure the electronics such as Front end Controllers, Front end Digitizers, Token Bit Manager, Port Cards and Read out Chips. XDAQ already has the classes that configure the parts. The CMS group that designed XDAQ did an interface to give the values that are needed for reading and writing from files.

 Reading and writing from files is not good, because there are so many people who work on this experiment who have files in different parts of the world and in different computers that makes it hard to control. In order to have the functionality needed to control and manipulate the data, a lot of methods are needed. For example, in the whole detector there are approximately 15,800 ROC’s and each one has DAC (Digital to Analog Converter) settings, so one file for each panel is needed and you have different people at different locations in the world are reading and writing in this file’s new values. This is susceptible to lost data and is difficult to have backup of all of this. The group of CMS decided to implement a database that has all of these settings and configurations. Now all is in one computer implemented in a relational database with parent-child relationships (see Figure 5). The scientists all over the world; which the most are from Fermilab and CERN; now can have access to that database and insert new data and read data. My task at this consists of writing an interface which can read and in the future write settings and configuration values of the electronics that require it. This interface has to coexist with the one that uses files, because it is the one that is working at the present time and two capabilities are desired (see flowchart 1).

MATERIALS AND METHODS

 For this project we use a lot of tools for programming and for accessing the database. The database management system that CMS is using is called Oracle. We use a database browser called TOra (Tool for Oracle). TOra is used to see the views that are created with the information of different tables that are going to contain the configuration and setting values that XDAQ needs (see Figure 6). TOra is only for browsing and making queries. It is not used to change any data or used with any other programming language. XDAQ is running in Scientific Linux, so we are using the editors and compilers that Linux provide for c++ (i.e. nedit, emacs). For adding the features of doing SQL queries in c++ code, we use OCCI (Oracle C++ Call Interface). OCCI have different methods for doing all the SQL clauses (i.e. select, update, where) and you can extract that data from the database and store it in whatever variable you want. The compiler that we use is g++ and you can use it in Makefile programming with the purpose of using all the libraries, including files, environmental variables and the path at the same time in the compilation and building time (see Figure 7). For debugging we use GNU Project Debugger (gdb).

 I have designed a parallel structure that uses databases to the file structure that is being used. All these tools made it possible to construct the interface. The main objective is that the database interface does the same things as the file interface but without adding a dependency of OCCI to XDAQ classes. So first is the construction of an oracle database class that contains the environment and the connection for the interface. Then we include that class in one that is going to contain the methods for doing the SQL queries and retrieving the data. The SQL class, which is going to be included in Pixel Configuration Database class, is the one that sends the data to XDAQ classes.

 This is the first step for having all Oracle Databases enclosed in a class to be included in the interface. Now Pixel Configuration Database class do the hard work calling the SQL command class for executing the queries and putting the result tables in vectors in form of a two dimensional matrix. In Pixel Configuration Database class we are going to make privets methods for each configuration class that have XDAQ. Pixel Configuration Database is going to have a general method named “get()”, this method receives a template pointer as parameter. We use templates with the purpose of doing only one method “get()” that knows which object is being sent as a parameter and then calls the respective method for sending the matrix with the values to the constructor of the object that you are sending. Each configuration class of XDAQ has a constructor that receives the name of the file that is sent by Pixel Configuration File class that is being used. I add to each class a constructor that receives a two dimensional vector with all the values that contain the result of the query. The constructor of those classes knows how to build itself from the information that arrives in the vector and add the corresponding values to the members of the class. The members of XDAQ classes are the configuration values that the components need, now stored in the database. So now in a “main()”, or in Pixel Online Software you can call “get()” and send a pointer of the configuration class that you want and is pointing to an instance of the respective object that you are creating inside “get()” method with the values of the vector.

RESULTS
 In figure 8 you can see the members of the Oracle database class that contains the environment variables and connections. Figure 9 shows the SQL command class that was constructed with all the methods needed for accessing the database. Figure 10 shows the implementation of SQL command class being used in Pixel Configuration Database class for accessing the database and inserts the result of a query in the vector that is going to be sent. In figure 11 we can observe the get function that received the template pointer and how it works. In figure 12 we can see an example of the program running where the DAC settings are being sent from the database to XDAQ DAC settings class and printed for certain ROC’s. In Figure 13 is a screen shot of Pixel Online Software web user interface that sends messages to XDAQ classes to configure and start the detection. Graph 1 shows the result of the configuration reading the values from database and in Graph 2 we can see the results of the configuration reading from the file. That graphs are a photo from the oscilloscope reading an analog signal in the ROC’s that we have in SiDet (Silicon Detector Facility), and you can see differences in the levels of the peaks because the DAC values that are in the files are optimized for that ROC’s and the ones that are in the database are random with perspective to the ones that are in SiDeT.
DISCUSSION AND CONCLUSION

The interface is completed as expected. The principal objective was to access database tables through c++ running in parallel with the existing program without adding a dependency of OCCI in XDAQ classes. We added the interface to Pixel Online Software and perform some testing with it and the parts that we tested worked fine. Graph 1 and Graph 2 are examples of tests that take place at SiDet. The interface has error handling implemented.
ACKNOWLEDGMENTS

This project takes place at the Fermi National Accelerator Laboratory. I thank the SIST program for gave me the opportunity of work in the CMS project and have all this great experience and knowledge that I acquired here. I want to thanks Dianne Engram and Elliott McCrory for running this program every year. I want to thank Umesh Joshi, Lorenzo Uplegger, and Rene Padilla for helping me in all aspects of adaptation here, learning, and patience. I learn a lot of things with them. I want to thanks Dr. Davenport for helping me to make corrections and instruct me with my paper. I want to thank my parents for supporting me all the time and for giving me the opportunity of study. I want to thanks U.S Department of Energy and the Office of Science for keeping these programs alive and supporting them. And last I want to thank God for giving this opportunity and for being with me all the time and keeping me going ahead. I have one of the best summers in my life, and if I could return I’ll do it gladly to keep learning here at Fermilab and share again with the nice people that work here.

REFERENCES
· C++ How to Program (4th Edition)
by Harvey M. Deitel (Author), Paul J. Deitel (Author)

· Private Oral Communication, Umesh Joshi

· Private Oral Communication, Lorenzo Uplegger

Graphs and Figures

[image: image4.jpg]Class | PixelConfigDB

Class

—

Database Configuration
reading XDAQ Classes
Get() jeading Path of Get()
L
e
gefTable() Setiings
.
getTable() Pixel Trimb\ts><
it ge(T;b\e() %xe\Maskbi% It
DAQ Clas: XDAQ Class
T
Pixel FEC
getTable() {Configuratio
= Pixel FE
getTable() —»Q—&i% .
- iilziils Data Files
ixel Portcart
getTable() —»{ e }7
¥
el Detecto
EEIEEED) CCOHﬁguralion)
1
Pixel Port
getTable() e
1
Pixel TBM
1
TXeTName
gerravie) [|——(G inme J———

Class
Pixel Oracle
Database

Database

Flowchart 1. Parallel interface structure.

[image: image5.png]Tek Run

10.0mV 1 “ATrigger
A Trigger
b ' —82.0mv Source
chi
ch2
ch3
cha
M 200ns A Chl \-60.0mVi _more—
1of3
120.20%
. Mode
Source | Coupling | Slope Level
Type = Normal
chi DC Y 60.0mv | NOrAL

Graph 1. This is the result in the oscilloscope when we run the interface reading from

 database. The peaks are unaligned because the DAC settings that we took from

 the database are random.

[image: image6.png]Tek Run

10.0mV 1 “ATrigger
A Trigger
-82.0mv Source
chi
ch2
ch3
I cha
In IREREN
AR R RERER
M 20Qns A Chl \-60.0mV) _more—
1of3
120.20%
. Mode
Source | Coupling | Slope Level
Type = Normal
chi DC Y 60.0mv | NOrAL

Graph 2. This is the result in the oscilloscope when we run the interface reading from

 Configuration files. The peaks are aligned because the DAC settings that we

 took from the files are optimized for the panel that we have in SiDet.

[image: image7.jpg]

Figure1. Silicon Pixel Tracker Detector. The barrel contains 3 layers of silicon pixel

 modules and 4 forward disks of silicon pixels.

[image: image8.jpg]

Figure 2. A blade in each side has to type of panels, in one side is made of 4 plaquette

 and in the other side is made of 3 plaquette.

[image: image9.png]Plaquette

VHDI, HDI

Bump Bonds

Wire Bond

Cooling channel

7777 "\

77,

Be Panel

Figure 3. Cross section cut of a panel to se how the silicon in bump bonded to the chips.

[image: image10.png]Plaquette:

Sensors,

ROC, VHDI

Adaptor

Board: Fan-
in/Fan-out

Turbine Geometry
24 Blades/disk
20°rotated

Blade: || /z-Disks:
12 Blades
x-Service TZB;):":I;I
Cylinder | | plaquettes A
~a
N
A= -
~ ¢
= 3 -
FEC = 4] Extension Cable
FED | [Power, Port Card
H Cooling
CMSIDAG) Optical Fibers

®

Disks

Figure 4. Two half disk mounted in the cylinder with all the electronics connected.

[image: image11.jpg]= (I N——
\
~
/
s - s
=
|
! i
|
%,
\ N
\
e\

Figure 5. Database Schema with parent-child relationship.

[image: image12.jpg]@

@ File Edit Tools Create Browser Window Help =18 %
léend 50 5 €000 @68 & uae a

S8 8 © |0 FRTvee P reapen eon]

© 1 B o reLvE e 7] =

Tabes | Views | Indeses | Seauences | ymoryms | Code | Tiges |

Viewlane Cotas | 'S0L | Dot | Graris | Depondercies | St |

PANEL_SUMAY_8D_FXLS_B8_AV R FFFRE K1

PENEL SR B P e PORT_NUMBER | FLAG_FOSN | FLAg [FocFosn__[moc DACNANE _[DACVALLE
AN LSy BaD s oo v | (I 2 El FoaRsic o usereTsnz [wec E
PANEL_SUMRY_BAD_PXLS_LIGHT V_ EEE| El Per gaC [0 [RT4EFET502_[CALDEL G
PANEL_SUMRY_BAD_PXLS_MASK_V 3 |13 2h Px2R 34 C [0 XT4EFETS0 2 |VCAL 250
R N Bl st [0 KraEreTs02 [vsuMCoL 9
PANELVTHR VCALY R El FieRsac o [RTAEFETS0.2 |VIBIAS_DAC 75
PANEL WRNG, DECODE_WAF -V N El Farsie o RrsEreTs02 vion 7
PILOT_HALF_DISK_COMPONENTS_V 7|19 2h Px2R 34 C [0 XT4EFETHD 2 [VBIASOP 115|
PIOTHADSCROC DRCS Y~ 3 & et KriErerays—oBAS S 4
LT NAME TRANSLATION.Y ~ IEMEE El FieRsac o RTsEFeTs02 VCTHR E
FILOT PUXFEC_DISK_FOC,DACS [0 [El Farsie o RrsereTs0z jver 5
PILOT_PIXFEC_DISK ROC_TAIM.Y IENEE El Fiansie o FreereTssz _[veoe E
PLOT POFED RO MIMBER Y ENEE El Farsie o RrsEreTo0.2 [vieak q
FILOT ToM_PARAMETERS.Y (12 [19 El FieRsac o RTaEFeTS02 VRGP 1
FUXEL FED_PANEL YV = RIE El Farsie o TR0z [vwitem =
PLAQUETTE_COMPONENTSV A El Fiansie o rsereT02_[vAesn q
T R ey (1 El Farsie o TR0z [vwilen =
PLAQUETTE 0VRAL GRADE.V 7 [El FieRsac o [RT4EFETH02 |VHLDDEL 75
PLAQUETTE STATUS v 6 (1 El Farsie o RTsEreTe0.2 (ViR 0
PLAQ_54D_PRLS_BUKP_BOND AV REE El Fiansie o RrsereTsn _[voo g
A0 BeD PALE BMF BOWD 0.V FREE El Fhasis o T E
LA BAD_PXLS_LIGHT ¥ EREE El FieRsac o RTaEFeT502 |VIBIAS_BUS E
PLAQ BAD PALS WASK BIT Y 2 1 El Farsie o TsEreT 0.2 [vOrFSETOR E
PLAQ 84D PRLS_PIEL_ALIVE V K El Fiansie o TsEreT 0.2 [VOrFSETRO i
ELA BANEER SARBIASTY: [EE! ER CRETIEYI I IeTAFERT RN o Tariae PH "
LA COVE_TIVE it

Toa high valus an connecton lack semaphare.

Figure 6. TOra is a tool for browse Oracle Databases. This figure is showing us a view

 that contains the DAC settings for the ROC’s of four blades.

[image: image13.jpg]# $(3DAG_ROOT) /dlaq/extern minetic 3 (DAY 05)./3 (DAY PLATRORN) /1ib \
(DAL ROOT) /claq /el /15,3 KDAG 0S) /3 { FDA PLATFCRM)

UserSourcePath = \
§ (XDAQ_ROOT) /dag/xdaq/sre/Linws/connon/

3(0AYROOT) /3 (Project) /3 (Package) /sre /common
UsercPlags
UserCCFlags = -0 -Wno-deprecated

UserDynanicLinkFlags
UserstaticLinkFlags
UserExecutableLinkFlags =

These libraries can be platforn specific and
potentially need conditional processing
*

Libraries =
Externalobjects =

#
Cowpile the source files and create a shared library

+
#ifdof Library
Staticlibrary= § (ackage)
#Dyeniciibrary= 3(Package)
tondif

ifdef Executable
Libraries=toolbox xdata xoept xoap xerces-c logdeplus mimetic
Executables= § (Executable). co

endif

include § (XDAQ_ROOT) /config/takefile rules

_all.
cd test; make; cd
clean
mzf
n -rf §(XDAQ_ROOT) /$ (Project) /3 (Package) /src/comnon/+w
m -rf §(XDAQROOT) /§ (Project) /8 (Package) /include/+w
cleanall.

©d test; make clean; cd
nake clean
cd 1ih/5 (<0A0_0S) /6 (XDAQ_PLATFORI) ; n ~fs libPixelConfigDBInterface a libPixelConfighataFornats a; cd

Figure 7. In this figure is an example of a makefile for compile the interface.

[image: image14.jpg]& PixelOracleDatabase. h - /home/mdones/Installation_Dir/TriDAS/pixeU/Pixe ConfigDBInterface/include/

e Edi e

Preferences Shell Macro Windows

// Pirelracleatabase b
#ifndef 2ixeloracleDatibase h
Fefine 2ixeluraclevatsbaseh

#include <occih>
#include <sstrean>
indude <pival b

class PixeltracleDatabase {
public
PixelocacloDazabase (s
~Bixeliraclebatabase)
bool connect(i;
void disconnect();
oracle: ‘occi :Comection *getComnection()
void relecseConnection (oracle: -ocei: :Gonnection *sonr) ;
int_ getturber0fConnections () {retwm munber0€Connests_; }
private
static orzcle: ‘occi: Envirornen: *enviromnent ;
static orzcle: ‘occi: StatelessSonnectionPool ZcomectionPool ;
static int muber0fConnects_;
pthread_netex t miterLock_;
oracle: occi: Comection *ccnnestions_
¥

#endif

Figure 8. This is the class that contains the connection to the database with OCCI.

[image: image15.jpg]i PixelSQLCommand.h - /home/mdones/Installation_Dit /TriDAS/pixel/Pixe ConfigDBInterface/include/

File Edit Search

Preferences Shell Macra Windows

class PixeloracleDatabase;

class PixelsQLomnand {

public

PixelSTLConnand (Pixel0oraclebatabase &db) ;
PixelSTLConnand (P1xel0rac] cDatabase *pdb);
“PixelSQLommand () ;

aperator ool ()
baol erzor() {

{retum error(); 3

return n_bError;

void init();
PixelSOLOomnands:
PixelSOLOomnands:

startover();
comnit();

void createstatenent();
void terminateStatenent();
void rebreatestatenent();

templatecclass T> PixelSQLComnands: operator<<(const T &t) {

comnand_ << t;
return Fthis;

PixelsQLoomnands: operator<< (canst chart str) {
comnand_ << str;

return Fthis;

PixelSOLOomnands: operator<< (PixelsqLOomnands (manipulator) (PixelsqLoomnands)) {
return nanipulator (+this) ;

3

void getField(int index, std.

void getField(int index, int &);
std::String getStringField(int index);
int getIntField(int index);

void getField(int index, oracle::occi

void setField(int index, std.

void setField(int index, int i);
void setField(int index, oracle::occi

PixelSOLOomnands:
PixelSOLOomnands:
PixelSOLOomnands:
PixelSOLOomNands
PixelSOLOomnands
PixelSOLOomnands
PixelSOLOomands

setSql() ;

exec (bool bhutoComn t=

execUpdate () ;
openTable (const char*
openTable (const char*
openTable (const char*
openTable (const char*

int getlimberdfSolmns ()
Std: :string getane0fColumns (int index);

int LoadRow() ;

void setprefetch(int prefetch);

private

string gstr) ;

Blob shlob);

string &str) ;

Blob shlob);
true) ;

table_nane,
table_nane,
table_nane,
table_nane,

std: :napcstd: string , std: :string> swhere , bool bForUpdate ,bool Like);
const char* where=0, bool bForUpdate=false];

const std.
const atd.

string swhere, bool bForUpdate=false) ;
ostringstrean swhere, bool bForUpdatesfalse);

Figure 9. This class has the methods of OCCI for execute queries.

[image: image16.jpg]% PixelConfigRealDB.cc - Thome/mdones/Installation_Dir/TriDAS/pixel/PixelConfigDBInterface/src/common/

File Edit Search FPreferences Shell Macro Windows

}//end getixelTEsettings

oid PixelbonfigReallB: :getPixelNancTranslationTable (vector< vector<string> >& table, string module) {
std: :string nthn = ° [PixeloonfigRealDB: :getPixelNancTranslationTable () 1\&"
std: ‘coutc< mthn <¢otd: :endl;
std: vector< string > col;
PixelSQLOomnand que (database) ;
map¢ string , string > vhere;

vhere["ROC_NAE'] = modules” PLOZ' 5

s+ que.openTable("ons_tap_pixel_view_ower pilot pixfec_disk roc_dacs v pfec imner join *
“oms_tnp,_pixel_view_ower pilot pirfed roc_mmber_v pred *
“on pfec roc_nane = pfed. roc_nane”,where, false . truc);
%

que. openTable ("cns_tnp_pixel_view_owner pilot_nene_translation v",where, false , true);

getsensralTable (table , que)

V/end getPixelNaneTranslationTable

oid PixelbonfigRealld: : getBeneralTable (vector< vector<string 5% table, PixelSOLComnands query) {
std: :string nthn = " [PixeloonfigRealls: :getBeneralTable () 11t";
std: ivector< string > col;
cout << mthn << "Starting to get data’ << endl;

int nCol= query. getiumber0£Columns ();
cout <¢ mthn <<'Number of Columns: " << nGol <<endl;

table. clear ();
query. setPrefetch(1000);

for(int z = 1; z <= nbol ; ze4)
col. push_back (query. getNane0fColunns (2)) 5
3 yend for
table. push_back(col) ;
while (query. Loadkov()) {
col.clear();
for(int ¢ =1 ; ¢ <= niol 5 or+) {
col. push_back (query. getStringfield(c));
3 yend for
table. push_back(col) ;
Vvend vhile
cout << mthn << "Table Size: " << table.size() <<endl;

TP

Figure 10. In this figure is being used the PixelSQLCommand class for executing queries

 and inserting the resulting table in a matrix vector. In this case for sending the

 matrix vector to the PixelNameTranslation class that is a XDAQ class that is

 used to store the hardware address of the Frond end Controller and Frond end

 Digitizer.

[image: image17.jpg]i PixelConfigRealDB. h - /home/mdones/Installation_Dir/TriDAS/pixel/Pixe(ConfigDBInterfacefinclude/

File Edit Search Preferences Shell Macro Windows

class PixelConfigRealDB(

public
PixeloonfigRealls ();

virtual ~PixeloonfigRealls();
bool istonnected();

bool connect();

void disconnest();

/* Bsturns pointer to the dsts found in the path with configurstion key. */
template <class T

inline void get(I* &data, std::string path, PixelConfigkey key) {

vector< vector<string> > databaseTable;

ery(
if (typeid(data)==typeid (PixelDACSettings*)) {
/4 Gout <¢ "Will return PixelDACSettings” ¢« endl;
From key I vill £ind the version to inplement */
string version = "v_2.2 4"

getPixelDACSe ttingsTable (databaseTable, path) ;
data = (T+) new PixelDAGSettings (databaseTable);

)
else if (typeid(data) ==typeid (PixelTrindlIPixels*)) {
qetPixelTrinitaTable (databaseTable, path) ;
data - (1%) new PixelTrinhllPixels (databaseTable)

)
else if (typeid (data) ==typeid (PixeliaskAlIPixels*)) {
qetPixellaskEitaTable (databaseTable, path) ;
data - (1%) new PixelMaskhlIPixels (databaseTable)

3

else if (typeid(data)==typeid (PixelFEOConfigH)) {
getPixelFECTable (databaseTable , path) ;
data = (T%) new PixelFECOonfiq(databaseTable);

3

else if (typeid(data)==typeid (PixelFEDConfigH)) {
getPixelFEDTable (databaseTable, path) ;
data = (T¥) new PixelFEDConfiq(databaseTable);

Jelse if (typeid (data) ==typeid (PixelPortoardiapt)) {
getPixelPortcardiiapTable (databaseTable, path) ;
data = (T%) new PixelPortoardiiap (databaseTable) ;

3

else if (typeid(data)==typeid (PixelDetectortonfiq)) {
getPixelDetectorbonfiglable (datahaseTable, path) ;
data = (T%) new PixelDetectorConfig(databaseTable) ;

3

else if (typeid (data)==typeid (PixelPortoardoonfiq?))
getPixelPor tCardbonfigTable (datahaseTable, path) ;
data = (T%) new PixelPortoardConfig(databaseTable) ;

3

Figure 11. This is the function get of Pixel Configuration class that is called in XDAQ.

 This method receive a pointer of any of the configuration XDAQ classes and

 this function recognized and call the method that have the vector matrix with

 the values of the database and instantiate and object of the XDAQ class that

 you send and put the pointer to point that instance.

Figure 12. Example of running the program with the DAC settings for two ROC’s

Do you want to read from file(f) or database(d)?d

XDAQ Configuration Classes:

1) PixelDACSettings

2) PixelTrimAllPixels

3) PixelMaskAllPixels

4) PixelFECConfig

5) PixelFEDConfig

6) PixelPortcardMap

7) PixelDetectorConfig

8) PixelPortCardConfig

9) PixelTBMSetings

10) PixelNameTranslation

11) Run All

12) Exit

Choose which XDAQ class you want to Configure or Initialize

1

[PixelOracleDatabase::connect()]

Connnection Information:

 connection = CMSCALD

 username = CMS_TMP_PRTTYPE_PIXEL_READER

Connecting...

[PixelConfigRealDB::getPixelDACSettingsTable()]

PixelSQLCommand::PixelSQLCommand()

sql exec: SELECT * FROM cms_tmp_pixel_view_owner.pilot_half_disk_roc_dacs_v WHERE ROC_NAME like '%FPix_BmO_D2_BLD8_PNL2_PLQ2%'

[PixelConfigRealDB::getGeneralTable()] Starting to get data

[PixelConfigRealDB::getGeneralTable()] Number of Columns: 17

[PixelConfigRealDB::getGeneralTable()] Table Size: 217

PixelSQLCommand::~PixelSQLCommand()

Vdd :6

Vana :160

Vsf :155

Vcomp :15

Vleak :0

VrgPr :0

VwllPr :35

VrgSh :0

VwllSh :171

VHldDel :135

Vtrim :93

VcThr :120

VIbias_bus :30

VIbias_sf :6

VOffsetOp :54

VbiasOp :115

VOffsetRO :140

VIon :110

VIbias_PH :115

VIbias_DAC :118

VIbias_roc :160

VIColOr :99

Vnpix :0

VsumCol :0

Vcal :250

CalDel :93

WBC :130

ChipContReg :180

Vdd :6

Vana :157

Vsf :161

Vcomp :15

Vleak :0

VrgPr :0

VwllPr :35

VrgSh :0

VwllSh :171

VHldDel :130

Vtrim :71

VcThr :111

VIbias_bus :30

VIbias_sf :6

VOffsetOp :49

VbiasOp :115

VOffsetRO :140

VIon :110

VIbias_PH :113

VIbias_DAC :104

VIbias_roc :160

VIColOr :99

Vnpix :0

VsumCol :0

Vcal :250

CalDel :99

WBC :130

ChipContReg :180

PAGE
__

 Page | 10

