
LArLite
Introduction & Use Case

Kazuhiro Terao @ Nevis, Columbia

1

About LArLite

2

• C++ code development toolkit
- Goal = easy & simple C++ code development
- “Supports Darwin & Linux”
- Dependency: ROOT, git, & LLVM or GCC
‣ ROOT for Cling/CINT dictionary generation

!

!
!

!
!
!
!

What Is LArLite?

3

What Is LArLite?

• C++ code development toolkit
- Goal = easy & simple C++ code development
- “Supports Darwin & Linux”
- Dependency: ROOT, git, & LLVM or GCC
‣ ROOT for Cling/CINT dictionary generation

• Typical code development steps
1. Generate a repository (a unit for collection of “package” directories)

- Can be a user’s git repository … typically github is used
2. Generate a package in a repository (a unit for library generation)
3. Write/Compile code in a package
4. Use compiled library

- Class/Function access through Cling/CINT/Python
‣ Python compat. largely through PyROOT, implementing option to build using Cython

- … or compile an executable
- Write an extension (separate) package and link against

4

“Easiness”
• Easy to install

- Many has ROOT, git, & compiler to build ROOT on their machine
- … then all needed is to “git clone” from github

!

!
!
!
!

!

!

5

“Easiness”
• Easy to install

- Many has ROOT, git, & compiler to build ROOT on their machine
- … then all needed is to “git clone” from github

• Easy to write code
- Repository, package, C++ class empty source code generation scripts
‣ One owns everything generated if started from scratch
‣ No need to “parasite” existing code repository
‣ No need to “copy & paste” existing source code

- “Fast” compilation (i.e. only compile what you wrote)

!

6

“Easiness”
• Easy to install

- Many has ROOT, git, & compiler to build ROOT on their machine
- … then all needed is to “git clone” from github

• Easy to write code
- Repository, package, C++ class empty source code generation scripts
‣ One owns everything generated if started from scratch
‣ No need to “parasite” existing code repository
‣ No need to “copy & paste” existing source code

- “Fast” compilation (i.e. only compile what you wrote)

• Easy to use compiled code
- Cling/CINT/Python interpreter to immediately access class/functions

Accessing “sample” class
in CINT

Accessing “sample” class
in Python

7

“Easiness”
• Easy to install

- Many has ROOT, git, & compiler to build ROOT on their machine
- … then all needed is to “git clone” from github

• Easy to write code
- Repository, package, C++ class empty source code generation scripts
‣ One owns everything generated if started from scratch
‣ No need to “parasite” existing code repository
‣ No need to “copy & paste” existing source code

- “Fast” compilation (i.e. only compile what you wrote)

• Easy to use compiled code
- Cling/CINT/Python interpreter to immediately access class/functions

• Easy to share code
- User A can simply git-pull user B’s repo through github & compile/use
- … or if it’s popular can leave in larlite repository

8

What Users Liked About

• Very easy to get started. Simple to understand.
• Well documented.
• I don’t have to start code-writing by “copy & paste” nor “build
with 20 already-existing .cxx code.”
• Easy to develop my own code suit or even framework.
• I graduated from CINT! I have my own compiled toolkit!
• Fast compilation to just compile my code
• My code in my git repo. Easy to share w/ others.
• My Python code is now “fast” with compiled C++ library
• I can use bunch of python apps with my C++ code now!

9

LArLite Needs?

• “Light-weight” installation
- small set of dependencies: ROOT, git, and llvm/gcc

• Simple “start from scratch”
- write an independent code suit in his/her own git repository

• CINT/Cling dictionary generation support
- compiled C++ code available in C/Python interpreter
- try compiled class/function w/ an interpreter immediately

• Flexibility
- smaller group, minimal policies, simple design

• Portability
- obviously “standard C++ source code” can be exported outside

10

Use Case Examples

11

Use Case Example

Binary Decoder

• 1st project: store an waveform as C++ data product in ROOT file
- More intuitive access for students familiar w/ C++ and ROOT

• Have a simple framework to interface various binary format

FileIO Algorithm

Algo A Algo B

Algo C Algo D

Bin

ASCII

ROOT

Decoder

FileIO interfaces
Decoding algorithms

 Current: low level decoder
 used for FPGA debugging

12

Optical Pulse
Reconstruction

• A summer undergraduate student liked C++ and wanted to practice
• He made a similar framework for optical pulse reconstruction

Pedestal
Algorithm

Pulse Reco
Algorithm

Pulse Reco
 Manager

Algo C Algo D

Algo E Algo F

Algo A

Pedestal
Algorithms

Pulse Reco
Algorithms

Algo B

 Current
Used for optical pulse
reco for MicroBooNE

Use Case Example

13

ala LArSoft
Analysis

• A graduate student was suffering from using LArSoft
• He came and ask if somehow this can be faster and run on his laptop
• Made analysis framework with identical data product def. as LArSoft

Hit Cluster

Track

Shower

etc...

Analysis
Processor

Analysis Module A

IO Interface

Analysis Module B
…

Data Product
Library

ala LArSoft
DataProducts

Processor Fmwk
(from pulse reco)

User’s module
 Current

Used for many
analysis/reconstruction

in LArLite

Use Case Example

14

ADC Simulation

Optical Detector
Simulation

FEM Logic (FPGA)
Simulation

Trigger Logic (FPGA)
Simulation

DRAM Readout
Simulation

Modulated algorithm to simulate
optical detector pulse shape

FPGA logic in C++

FPGA logic in C++

Producer of “raw” waveform

• Needed C++ simulation for our optical readout electronics
• Wrote a suite of simulation chain

 Current
Ported into LArSoft

for UB optical readout
simulation

Use Case Example

15

EM Shower
Reconstruction

• Other students/post-docs tried LArLite and liked it (faster, easier)
• The majority of users are interested in making EMShower reco
• Wrote a suite of reconstruction chain for EMShower

ClusterRecoUtil

CMTool

ShowerReco3D

Detailed 2D cluster parameter
algorithm & data representation

2D Cluster Merging/Matching
Framework

3D EM shower reconstruction
Framework

 Current
Ported into LArSoft
for EM Shower reco

Use Case Example

16

GeoAlgo

“The Book”: Real Time Collision Detection
- Algorithm/Design pattern for 3D game programming
- Highly regarded reference among experts
- Excellent resource for our problem solving!
- Easy to read & follow
‣ Lots of abstract code template in the book

• Wanted a suite of geometrical calculation algorithms for analysis/reco
• Decided to make our own based on a text book

Comes w/ viewers,
tons of unit-test routines

 Current
Used in various analysis!

Use Case Example

17

larlite_numpy

Use Case Example

• On-going work!
• Following root_numpy approach
• Uses “ala LArSoft” data libraries to create numpy record array

- Using Cython (… and with very small Python C-API)
• Many awesome Python scientific libraries available for analysis

- num/scipy, pandas, PyTable, scikit-learn, PyQTGraph, matplotlib, etc…

LArPy

• A converter suite from C++ objects to Python built-in types
- This is for toolkits introduced in LArLite
- Uses Python native C-API, no extra dependency

• Helps to bridge with Python open source applications
- e.g.) current GeoAlgo viewer uses this suit + matplotlib python module

• On-going work but effort shifting to larlite_numpy

18

Understanding
LArSoft

• Compared a speed performance of a simple analysis
- Read in data product, make a TH1D histogram
- Resulted in ~5 orders of magnitude difference in speed

• Identified a major cause in our usage of art (at least in MicroBooNE)
- We had a “service” (singleton) that was always doing heavy analysis
- It was always there, no one noticed, often not used.
- LArSoft users were used to “~1 second / event” process speed

• Identified a need of improvement in art utility
- After fixing the problem above, still slow
- FindManyP in LArSoft was slower than an equivalent suite in LArLite
- Feedback to art team by Wes Ketchum, now LArSoft is pretty fast

Use Case Example

19

Well, there are more & more of applications made in LArLite

Sensitivity Study

LowEnergyExcess
Study

Optical Model
Analysis DataCompression

Modeling

RunConfiguration  
Database Tools

DataProcessing
Framework

Calibration DB
Interface

What I am getting from this experience:
• Providing a support greatly help to speed up code development

- Most code written by students, and they do enjoy a lot
- One undergrad student could write a fmwk with I/O by herself

• ... and good news: there are undergrads, grads, and post-docs who
really want to write a proper code suite rather than a CINT macro :)

Event Reconstruction
Framework

Use Case Example

20

Summary

21

Summary

• LArLite is a simple & light-weight code development suite
- Easy to install
- Easy to develop/extend code, build, and share with others
- Easy to write an application w/ interpreter support

• Many code toolkits/frameworks written using LArLite
- This keeps on-going…
- Includes “ala LArSoft” analysis framework
- Large fraction exported to LArSoft
‣ Raised questions on how to share/maintain code written outside LArSoft

22

