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About LArLite
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• C++ code development toolkit 
- Goal = easy & simple C++ code development 
- “Supports Darwin & Linux” 
- Dependency: ROOT, git, & LLVM or GCC 
‣ ROOT for Cling/CINT dictionary generation 
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What Is LArLite?
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What Is LArLite?

• C++ code development toolkit 
- Goal = easy & simple C++ code development 
- “Supports Darwin & Linux” 
- Dependency: ROOT, git, & LLVM or GCC 
‣ ROOT for Cling/CINT dictionary generation 

• Typical code development steps 
1. Generate a repository (a unit for collection of “package” directories) 

- Can be a user’s git repository … typically github is used 
2. Generate a package in a repository (a unit for library generation) 
3. Write/Compile code in a package 
4. Use compiled library 

- Class/Function access through Cling/CINT/Python  
‣ Python compat. largely through PyROOT, implementing option to build using Cython 

- … or compile an executable 
- Write an extension (separate) package and link against
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“Easiness”
• Easy to install 

- Many has ROOT, git, & compiler to build ROOT on their machine 
- … then all needed is to “git clone” from github 
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“Easiness”
• Easy to install 

- Many has ROOT, git, & compiler to build ROOT on their machine 
- … then all needed is to “git clone” from github 

• Easy to write code 
- Repository, package, C++ class empty source code generation scripts 
‣ One owns everything generated if started from scratch 
‣ No need to “parasite” existing code repository 
‣ No need to “copy & paste” existing source code  

- “Fast” compilation (i.e. only compile what you wrote) 

!
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“Easiness”
• Easy to install 

- Many has ROOT, git, & compiler to build ROOT on their machine 
- … then all needed is to “git clone” from github 

• Easy to write code 
- Repository, package, C++ class empty source code generation scripts 
‣ One owns everything generated if started from scratch 
‣ No need to “parasite” existing code repository 
‣ No need to “copy & paste” existing source code  

- “Fast” compilation (i.e. only compile what you wrote) 

• Easy to use compiled code 
- Cling/CINT/Python interpreter to immediately access class/functions

Accessing “sample” class 
in CINT

Accessing “sample” class 
in Python
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“Easiness”
• Easy to install 

- Many has ROOT, git, & compiler to build ROOT on their machine 
- … then all needed is to “git clone” from github 

• Easy to write code 
- Repository, package, C++ class empty source code generation scripts 
‣ One owns everything generated if started from scratch 
‣ No need to “parasite” existing code repository 
‣ No need to “copy & paste” existing source code  

- “Fast” compilation (i.e. only compile what you wrote) 

• Easy to use compiled code 
- Cling/CINT/Python interpreter to immediately access class/functions 

• Easy to share code 
- User A can simply git-pull user B’s repo through github & compile/use 
- … or if it’s popular can leave in larlite repository
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What Users Liked About

• Very easy to get started. Simple to understand. 
• Well documented. 
• I don’t have to start code-writing by “copy & paste” nor “build 
with 20 already-existing .cxx code.” 
• Easy to develop my own code suit or even framework. 
• I graduated from CINT! I have my own compiled toolkit! 
• Fast compilation to just compile my code 
• My code in my git repo. Easy to share w/ others. 
• My Python code is now “fast” with compiled C++ library 
• I can use bunch of python apps with my C++ code now!
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LArLite Needs?

• “Light-weight” installation 
- small set of dependencies: ROOT, git, and llvm/gcc  

• Simple “start from scratch” 
- write an independent code suit in his/her own git repository 

• CINT/Cling dictionary generation support 
- compiled C++ code available in C/Python interpreter 
- try compiled class/function w/ an interpreter immediately 

• Flexibility 
- smaller group, minimal policies, simple design 

• Portability 
- obviously “standard C++ source code” can be exported outside
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Use Case Examples
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Use Case Example

Binary Decoder

• 1st project: store an waveform as C++ data product in ROOT file 
- More intuitive access for students familiar w/ C++ and ROOT 

• Have a simple framework to interface various binary format

FileIO Algorithm

Algo A Algo B

Algo C Algo D

Bin

ASCII

ROOT

Decoder

FileIO interfaces
Decoding algorithms

 Current: low level decoder  
                 used for FPGA debugging
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Optical Pulse 
Reconstruction

• A summer undergraduate student liked C++ and wanted to practice 
• He made a similar framework for optical pulse reconstruction

Pedestal 
Algorithm

Pulse Reco 
Algorithm

Pulse Reco 
 Manager

Algo C Algo D

Algo E Algo F

Algo A

Pedestal 
Algorithms

Pulse Reco 
Algorithms

Algo B

 Current  
Used for optical pulse 
reco for MicroBooNE

Use Case Example
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ala LArSoft 
Analysis

• A graduate student was suffering from using LArSoft 
• He came and ask if somehow this can be faster and run on his laptop 
• Made analysis framework with identical data product def. as LArSoft

Hit Cluster

Track

Shower

etc...

Analysis 
Processor

Analysis Module A

IO Interface

Analysis Module B
…

Data Product 
Library

ala LArSoft 
DataProducts

Processor Fmwk 
(from pulse reco)

User’s module
 Current  

Used for many 
analysis/reconstruction 

in LArLite

Use Case Example
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ADC Simulation

Optical Detector 
Simulation

FEM Logic (FPGA) 
Simulation 

Trigger Logic (FPGA) 
Simulation 

DRAM Readout 
Simulation 

Modulated algorithm to simulate 
optical detector pulse shape

FPGA logic in C++

FPGA logic in C++

Producer of “raw” waveform

• Needed C++ simulation for our optical readout electronics 
• Wrote a suite of simulation chain

 Current  
Ported into LArSoft 

for UB optical readout 
simulation

Use Case Example
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EM Shower 
Reconstruction

• Other students/post-docs tried LArLite and liked it (faster, easier) 
• The majority of users are interested in making EMShower reco 
• Wrote a suite of reconstruction chain for EMShower

ClusterRecoUtil

CMTool

ShowerReco3D

Detailed 2D cluster parameter 
algorithm & data representation

2D Cluster Merging/Matching 
Framework

3D EM shower  reconstruction 
Framework

 Current  
Ported into LArSoft 
for EM Shower reco

Use Case Example
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GeoAlgo

“The Book”: Real Time Collision Detection 
- Algorithm/Design pattern for 3D game programming 
- Highly regarded reference among experts 
- Excellent resource for our problem solving! 
- Easy to read & follow 
‣ Lots of abstract code template in the book

• Wanted a suite of geometrical calculation algorithms for analysis/reco 
• Decided to make our own based on a text book

Comes w/ viewers,  
tons of unit-test routines

 Current  
Used in various analysis!

Use Case Example
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larlite_numpy

Use Case Example

• On-going work! 
• Following root_numpy approach 
• Uses “ala LArSoft” data libraries to create numpy record array 

- Using Cython (… and with very small Python C-API) 
• Many awesome Python scientific libraries available for analysis 

- num/scipy, pandas, PyTable, scikit-learn, PyQTGraph, matplotlib, etc…

LArPy

• A converter suite from C++ objects to Python built-in types 
- This is for toolkits introduced in LArLite 
- Uses Python native C-API, no extra dependency 

• Helps to bridge with Python open source applications 
- e.g.) current GeoAlgo viewer uses this suit + matplotlib python module 

• On-going work but effort shifting to larlite_numpy
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Understanding 
LArSoft

• Compared a speed performance of a simple analysis 
- Read in data product, make a TH1D histogram 
- Resulted in ~5 orders of magnitude difference in speed  

• Identified a major cause in our usage of art (at least in MicroBooNE) 
- We had a “service” (singleton) that was always doing heavy analysis 
- It was always there, no one noticed, often not used. 
- LArSoft users were used to “~1 second / event” process speed 

• Identified a need of improvement in art utility 
- After fixing the problem above, still slow 
- FindManyP in LArSoft was slower than an equivalent suite in LArLite 
- Feedback to art team by Wes Ketchum, now LArSoft is pretty fast

Use Case Example
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Well, there are more & more of applications made in LArLite

Sensitivity Study

LowEnergyExcess 
Study

Optical Model 
Analysis DataCompression 

Modeling

RunConfiguration  
Database Tools

DataProcessing 
Framework

Calibration DB 
Interface

What I am getting from this experience: 
• Providing a support greatly help to speed up code development 

- Most code written by students, and they do enjoy a lot 
- One undergrad student could write a fmwk with I/O by herself 

• ... and good news: there are undergrads, grads, and post-docs who 
really want to write a proper code suite rather than a CINT macro :)

Event Reconstruction 
Framework

Use Case Example
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Summary
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Summary

• LArLite is a simple & light-weight code development suite  
- Easy to install 
- Easy to develop/extend code, build, and share with others 
- Easy to write an application w/ interpreter support  

• Many code toolkits/frameworks written using LArLite 
- This keeps on-going… 
- Includes “ala LArSoft” analysis framework 
- Large fraction exported to LArSoft 
‣ Raised questions on how to share/maintain code written outside LArSoft
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