M. O. WASCKO, H. A. TANAKA LBNF/DUNE ROADMAP

LBNF/DUNE SCHEDULE

Year	20	21		20	22	2	202	.3	2	02	4	2	02!	5	202	26	20	27	2	028		2	2029)		203	0
LBNF																					I	I					
PIP II (1.2 MW)	 	i	 		Ì	ï	÷	ï	ï	÷											i	i					
PIP III (2.4 MW)	 	 					1			ł		ł	1	T T		Ì	l I	i i i i	1	1	i i i i	- I	1	1	Ì	I.	
LBNF																											
Excavation, construction commissioning	 	l I	 	 								 	1	l I													
First 10kT module complete																											
Full 40kT fiducial mass																											

- 2021 Q4: start of operations with 0.7 MW and 10 kT mass
- 2024 Q4: start of operations with PIP II (1.2 MW) and 40 kT mass
- 2030 Q4 start of operations with PIP III (2.4 MW)

IN TABULAR FORM

Year	Calendar year	power (MW	detector mass (kt)	operational time years	Incremental exposure	Net exposure
0.0	2021.75	0.7	10	0.25	1.75	1.75
0.25	2022.00	0.7	10	0.25	1.75	3.5
0.50	2022.25	0.7	10	0.25	1.75	5.25
0.75	2022.50	0.7	10	0.25	1.75	7
1.0	2022.75	0.7	10	0.25	1.75	8.75
1.25	2023.00	0.7	10	0.25	1.75	10.5
1.50	2023.25	0.7	10	0.25	1.75	12.25
1.75	2023.50	0.7	10	0.25	1.75	14
2.00	2023.75	0.7	10	0.25	1.75	15.75
2.25	2024.00	0.7	10	0.25	1.75	17.5
2.50	2024.25	0.7	10	0.25	1.75	19.25
2.75	2024.50	0.7	10	0.25	1.75	21
3.0	2024.75	1.2	40	0.25	12	33
3.25	2025.00	1.2	40	0.25	12	45
3.50	2025.25	1.2	40	0.25	12	57
3.75	2025.50	1.2	40	0.25	12	69
4.0	2025.75	1.2	40	0.25	12	81
4.25	2026.00	1.2	40	0.25	12	93
4.50	2026.25	1.2	40	0.25	12	105
4.75	2026.50	1.2	40	0.25	12	117
5.00	2026.75	1.2	40	0.25	12	129
5.25	2027.00	1.2	40	0.25	12	141
5.50	2027.25	1.2	40	0.25	12	153
5.75	2027.50	1.2	40	0.25	12	165
6.00	2027.75	1.2	40	0.25	12	177
6.25	2028.00	1.2	40	0.25	12	189
6.5	2028.25	1.2	40	0.25	12	201
6.75	2028.50	1.2	40	0.25	12	213

7	2028.75	1.2	40	0.25	12	225
7.25	2029.00	1.2	40	0.25	12	237
7.5	2029.25	1.2	40	0.25	12	249
7.75	2029.50	1.2	40	0.25	12	261
8	2029.75	1.2	40	0.25	12	273
8.25	2030.00	1.2	40	0.25	12	285
8.5	2030.25	1.2	40	0.25	12	297
8.75	2030.50	1.2	40	0.25	12	309
9	2030.75	2.4	40	0.25	24	333
9.25	2031.00	2.4	40	0.25	24	357
9.5	2031.25	2.4	40	0.25	24	381
9.75	2031.50	2.4	40	0.25	24	405
10	2031.75	2.4	40	0.25	24	429
10.25	2032.00	2.4	40	0.25	24	453
10.5	2032.25	2.4	40	0.25	24	477
10.75	2032.50	2.4	40	0.25	24	501
11.00	2032.75	2.4	40	0.25	24	525
11.25	2033.00	2.4	40	0.25	24	549
11.5	2033.25	2.4	40	0.25	24	573
11.75	2033.50	2.4	40	0.25	24	597
12	2033.75	2.4	40	0.25	24	621
12.25	2034.00	2.4	40	0.25	24	645
12.5	2034.25	2.4	40	0.25	24	669
12.75	2034.50	2.4	40	0.25	24	693
13	2034.75	2.4	40	0.25	24	717
13.25	2035.00	2.4	40	0.25	24	741
13.5	2035.25	2.4	40	0.25	24	765
13.75	2035.50	2.4	40	0.25	24	789

Table 1-1

MH AND CPV SENSITIVITY

- MH: min. sig.100% δ_{CP} coverage:
 - $2\sigma: \sim 30 \text{ kT} \times \text{MW} \times \text{yr} = 2024 \text{ Q4}$
 - 3σ : ~65 kT x MW x yr = 2025 Q2
 - 5σ : ~180 kT x MW x yr = 2028 Q1

- CPV: min. sig. for 50% of δ_{CP}
 - 2σ : ~85 kT x MW x yr = 2026 Q1
 - $3\sigma: \sim 210 \text{ kT x MW x yr} = 2028 \text{ Q2}$
 - $5\sigma:~750 \text{ kT} \times \text{MW} \times \text{yr} = 2035 \text{ Q2}$

 Θ_{23}

• precision on $\sin^2\theta_{23}$ (assuming $\sin^2\theta_{23} = 0.5$) • precision on Δm^2_{32} (x10⁻³ eV²)

- $\delta(\sin^2\theta_{23}) \sim 0.030$: ~100 kt x MW x yr = 2026 Q1
- $\delta(\sin^2\theta_{23}) \sim 0.020$: ~450 kt x MW x yr = 2032 Q1
- $\delta(\sin^2\theta_{23}) \sim 0.015$: ~825 kt x MW x yr = 2036 Q1

δ(Δm²₃₂)~1.5: ~130 kt x MW x yr = 2026 Q4
δ(Δm²₃₂)~1.0: ~290 kt x MW x yr = 2030 Q2
δ(Δm²₃₂)~0.7: ~621 kt x MW x yr = 2033 Q4

PROTON DECAY $(p \rightarrow K + v)$

- Lifetime sensitivity at 90%CL (x SK limit of 6x10³³ years)
 - 1x: 4.75 years ~ 2026 Q3
 - 3x: 8 years ~2029 Q4
 - 10x: 20 years~ 2041 Q4
- (with faster 40 kT deployment)
 - 1x: 3.5 years
 - 3x: 6.5 years
 - 10x: 18.5 years

Fermilab

Note difference in staging strategy

- Here, 10 kt inital phase for 5 years followed by 40 kt
- LBL assumes 10 kt for 3 years, followed by 40 kt

NOTE:

 $(\sqrt{2})^{1/2}$

6

- - -

.....

20 GeV, 5%/10%