Short-Baseline Experiments with Reactors and Sources

Jun Cao and Soo-Bong Kim (April 19. 2015) at Fermilab

- Reactor: an intense source of electron antineutrinos with energies between a few and several MeV
- Radioactive source: neutrinos or antineutrinos produced by a strong (0.1~10 MCi) nuclear decays
- Precise measurements of oscillation parameters by reactor neutrinos
 - Determination of unknown neutrino properties or testing theoretical models
 - Sensitive test of the three-flavor framework or new physics beyond Standard Model
 - Expected precisions of θ_{13} and Δm_{ee}^2 by ~2017 sin2(2 θ_{13}): 10% Double Chooz, 3~4% Daya Bay, 5% RENO Δm_{ee}^2 [10⁻³ eV²]: 0.07 Daya Bay, 0.1 RENO
 - Expected precision of θ_{12} , Δm_{21}^2 , and Δm_{ee}^2 by ~2025 JUNO/RENO-50: better than1%

- Large liquid scintillator detector with a baseline of ~50 km from reactors [JUNO and RENO-50]
 - Determination of neutrino mass hierarchy with an energy resolution of 3% at 1 MeV
 - [$3 \sim 4\sigma$ significance: 6 yrs. of JUNO, 10 yrs. of RENO-50]
 - Precise measurements of oscillation parameters $\theta_{12},\,\Delta m_{21}{}^2,\,and\,\Delta m_{ee}{}^2$ by ~2025
 - Neutrinos from the Earth, the Sun, and Supernova
 - JUNO: fully approved, start of excavation in Jan 2015, data-taking in 2020
 - RENO-50: R&D funded
- Search for sterile neutrinos
 - Short baselines (5~20 m) of reactor neutrinos (2015~2016) : DANSS, Hanaro, Neutrino-4, Nucifer, NuLat, Poseidon, PROSPECT, SoLid, and Stereo [sensitivity of sin2(2 θ_{14}) ~0.01, reactor anomaly proven or rejected with 5 σ significance by 2020]
 - Strong (0.1~10 MCi) radioactive neutrino sources (⁵¹Cr, ³⁷Ar, ¹⁴⁴Ce, ³⁷Sr, ⁸Li) for $\Delta m_{41}^2 \sim 1 \text{ eV}^2$ and $\sin^2(2\theta_{14}) \sim (0.03 0.04)$: SOX with ¹⁴⁴Ce/⁵¹Cr in 2016,